Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of width and density of supersonic molecule beam on penetration depth of tokamak

Wu Xue-Ke Sun Xiao-Qin Liu Yin-Xue Li Hui-Dong Zhou Yu-Lin Wang Zhan-Hui Feng Hao

Citation:

Effects of width and density of supersonic molecule beam on penetration depth of tokamak

Wu Xue-Ke, Sun Xiao-Qin, Liu Yin-Xue, Li Hui-Dong, Zhou Yu-Lin, Wang Zhan-Hui, Feng Hao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The penetration depth and the fueling efficiency of the supersonic molecular beam injection (SMBI) are affected by both the intrinsic parameters of the SMBI and the parameters of background plasma. The purpose of the present paper is to explore the possible methods of improving the fueling efficiency of SMBI by varying the beam parameters. The penetration depths and the transport processes of SMBI with different beam densities and different beam widths are studied using the trans-neut module of the three-dimensional (3D) edge turbulence simulation code BOUT++. In our present study, the number of the injected molecules per unit time the injection speed and the injected flux are kept constant throughout the SMB fueling process, but the beam density and beam width are adjusted. The simulation is based on the real magnetic configuration of the HL-2A tokamak. Our results indicate that the deeper injection depth can be obtained with a supersonic molecular beam (SMB) with smaller density and larger width. However, the injection depth decreases when the beam density or the beam width increases. The residence time of the beam front can be lengthened by increasing the beam density and widening the beam width. If the beam density increases or the beam width enlarges, not only the injection depth decreases, but also the residence time shortens. The front of the atom density exhibits the behaviors analogous to that of the SMB, namely, both its depth and its residence time decreases with beam density increasing and beam width decreasing. At the same time, the dissociation rate has a larger range in the spatiotemporal coordinate. The global growth of dissociation rate is inhibited by the molecular dissociation localization. However, the localization of the molecular dissociation accelerates the local growth of the dissociation rate, and the global growth of the molecular dissociation rate is promoted. When the promoting effect is dominant, under the condition of constant flux and fixed injection speed, the smaller molecular injection width will lead to the shallower molecular penetration depth. The simulation results suggest that if we attempt to promote the fueling efficiency and to increase the injection depth of SMBI, we should utilize the SMBI with a smaller density and larger beam width. Of course, the concrete influences of the SMBI on injection depth and fueling efficiency should be studied further by varying other relevant parameters of the SMB and the backgroud plasma.
      Corresponding author: Li Hui-Dong, huidongli@mail.xhu.edu.cn;zhwang@swip.ac.cn ; Wang Zhan-Hui, huidongli@mail.xhu.edu.cn;zhwang@swip.ac.cn
    • Funds: Project supported by the National Natural Science Fund for Young Scientists of China (Grant No. 11605143), the National Natural Science Foundation of China (Grant No. 11575055), the National ITER Program of China (Contract No. 2014GB113000), China National Magnetic Confinement Fusion Science Program (Grant No. 2013GB107001), and the Open Research Subject of Key Laboratory of Advanced Computation in Xihua University, China (Grant Nos. szjj2017-011, szjj2017-012).
    [1]

    Sajjad S, Gao X, Ling B, Bhatti S H, Ang T 2009 Phys. Lett. A 373 1133

    [2]

    Baylor L R, Jernigan T C, Combs S K, Houlberg W A, Owen L W, Rasmussen D A, Maruyama S, Parks P B 2000 Phys. Plasmas 7 1878

    [3]

    Yao L H, Zhao D W, Feng B B, Chen C Y, Zhou Y, Han X Y, Li Y G, Jerome B, Duan X R 2010 Plasma Sci. Technol. 12 529

    [4]

    Yu D L, Chen C Y, Yao L H, Dong J Q, Feng B B, Zhou Y, Shi Z B, Zhou J, Han X Y, Zhong W L, Cui C H, Huang Y, Cao Z, Liu Y, Yan L W, Yang Q W, Duan X R, Liu Y 2012 Nucl. Fusion 52 082001

    [5]

    Xiao W W, Diamond P H, Zou X L, Dong J Q, Ding X T, Yao L H, Feng B B, Chen C Y, Zhong W L, Xu M 2012 Nucl. Fusion 52 114027

    [6]

    Ma Q, Yu D L, Chen C Y, Wei Y L, Zhong W L, Zou X L, Zuo H Y, Du J L, Liu L, Dong C F, Shi Z B, Zhao K J, Feng B B, Zhou Y, Wang Z H, Xu M, Liu Y, Yan L W, Yang Q W, Yao L H, Ding X T, Dong J Q, Duan X R, Liu Y, HL-2A Team 2016 Nucl. Fusion 56 126008

    [7]

    Huang D W, Chen Z Y, Tong R H, Yan W, Wang S Y, Wei Y N, Ma T K, Dai A J, Wang X L, Jiang Z H, Yang Z J, Zhuang G, Pan Y, J-TEXT Team 2017 Plasma Phys. Contr. Fusion 59 085002

    [8]

    Sun H J, Ding X T, Yao L H, Feng B B, Liu Z T, Duan X R, Yang Q W 2010 Plasma Phys. Contr. F. 52 045003

    [9]

    Braams B J 1996 Contrib. Plasma Phys. 36 276

    [10]

    Vold E L, Najmabadi F, Conn R W 1992 Nucl. Fusion 32 1433

    [11]

    Rognlien T D, Braams B J, Knoll D A 1996 Contrib. Plasma Phys. 36 105

    [12]

    Rognlien T D, Ryutov D D, Mattor N, Porter G D 1999 Phys. Plasmas 6 1851

    [13]

    Dudson B D, Umansky M V, Xu X Q, Snyder P B, Wilson H R 2009 Comput. Phys. Commun. 180 1467

    [14]

    Xu X Q, Umansky M V, Dudson B, Snyder R B 2008 Commun. Comput. Phys. 4 949

    [15]

    Umansky M V, Xu X Q, Dudson B, Lodestro L L, Myra J R 2009 Comput. Phys. Commun. 180 887

    [16]

    Landman I S, Janeschitz G 2007 J. Nucl. Mater. 363 1061

    [17]

    Wang Z H, Xu X Q, Xia T Y, Rognlien T D 2014 Nucl. Fusion 54 043019

    [18]

    Wang Y H, Guo W F, Wang Z H, Ren Q L, Sun A P, Xu M, Wang A K, Xiang N 2016 Chin. Phys. B 25 106601

    [19]

    Zhou Y L, Wang Z H, Xu X Q, Li H D, Feng H, Sun W G 2015 Phys. Plasmas 22 012503

    [20]

    Zhou Y L, Wang Z H, Xu M, Wang Q, Nie L, Feng H, Sun W G 2016 Chin. Phys. B 25 095201

    [21]

    Wu X K, Li H D, Wang Z H, Feng H, Zhou Y L 2017 Chin. Phys. B 26 065201

    [22]

    Shi Y F, Wang Z H, Ren Q L, Sun A P, Yu D L, Guo W F, Xu M 2017 Chin. Phys. B 26 055201

  • [1]

    Sajjad S, Gao X, Ling B, Bhatti S H, Ang T 2009 Phys. Lett. A 373 1133

    [2]

    Baylor L R, Jernigan T C, Combs S K, Houlberg W A, Owen L W, Rasmussen D A, Maruyama S, Parks P B 2000 Phys. Plasmas 7 1878

    [3]

    Yao L H, Zhao D W, Feng B B, Chen C Y, Zhou Y, Han X Y, Li Y G, Jerome B, Duan X R 2010 Plasma Sci. Technol. 12 529

    [4]

    Yu D L, Chen C Y, Yao L H, Dong J Q, Feng B B, Zhou Y, Shi Z B, Zhou J, Han X Y, Zhong W L, Cui C H, Huang Y, Cao Z, Liu Y, Yan L W, Yang Q W, Duan X R, Liu Y 2012 Nucl. Fusion 52 082001

    [5]

    Xiao W W, Diamond P H, Zou X L, Dong J Q, Ding X T, Yao L H, Feng B B, Chen C Y, Zhong W L, Xu M 2012 Nucl. Fusion 52 114027

    [6]

    Ma Q, Yu D L, Chen C Y, Wei Y L, Zhong W L, Zou X L, Zuo H Y, Du J L, Liu L, Dong C F, Shi Z B, Zhao K J, Feng B B, Zhou Y, Wang Z H, Xu M, Liu Y, Yan L W, Yang Q W, Yao L H, Ding X T, Dong J Q, Duan X R, Liu Y, HL-2A Team 2016 Nucl. Fusion 56 126008

    [7]

    Huang D W, Chen Z Y, Tong R H, Yan W, Wang S Y, Wei Y N, Ma T K, Dai A J, Wang X L, Jiang Z H, Yang Z J, Zhuang G, Pan Y, J-TEXT Team 2017 Plasma Phys. Contr. Fusion 59 085002

    [8]

    Sun H J, Ding X T, Yao L H, Feng B B, Liu Z T, Duan X R, Yang Q W 2010 Plasma Phys. Contr. F. 52 045003

    [9]

    Braams B J 1996 Contrib. Plasma Phys. 36 276

    [10]

    Vold E L, Najmabadi F, Conn R W 1992 Nucl. Fusion 32 1433

    [11]

    Rognlien T D, Braams B J, Knoll D A 1996 Contrib. Plasma Phys. 36 105

    [12]

    Rognlien T D, Ryutov D D, Mattor N, Porter G D 1999 Phys. Plasmas 6 1851

    [13]

    Dudson B D, Umansky M V, Xu X Q, Snyder P B, Wilson H R 2009 Comput. Phys. Commun. 180 1467

    [14]

    Xu X Q, Umansky M V, Dudson B, Snyder R B 2008 Commun. Comput. Phys. 4 949

    [15]

    Umansky M V, Xu X Q, Dudson B, Lodestro L L, Myra J R 2009 Comput. Phys. Commun. 180 887

    [16]

    Landman I S, Janeschitz G 2007 J. Nucl. Mater. 363 1061

    [17]

    Wang Z H, Xu X Q, Xia T Y, Rognlien T D 2014 Nucl. Fusion 54 043019

    [18]

    Wang Y H, Guo W F, Wang Z H, Ren Q L, Sun A P, Xu M, Wang A K, Xiang N 2016 Chin. Phys. B 25 106601

    [19]

    Zhou Y L, Wang Z H, Xu X Q, Li H D, Feng H, Sun W G 2015 Phys. Plasmas 22 012503

    [20]

    Zhou Y L, Wang Z H, Xu M, Wang Q, Nie L, Feng H, Sun W G 2016 Chin. Phys. B 25 095201

    [21]

    Wu X K, Li H D, Wang Z H, Feng H, Zhou Y L 2017 Chin. Phys. B 26 065201

    [22]

    Shi Y F, Wang Z H, Ren Q L, Sun A P, Yu D L, Guo W F, Xu M 2017 Chin. Phys. B 26 055201

  • [1] Zhang Qi-Fan, Le Wen-Cheng, Zhang Yu-Hao, Ge Zhong-Xin, Kuang Zhi-Qiang, Xiao Sheng-Yang, Wang Lu. Effects of radiation from tungsten impurities on the thermal energy loss during the fast thermal quench stage of major disruption in tokamak plasmas. Acta Physica Sinica, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [2] Liu Guan-Nan, LI Xin-Xia, Liu Hong-Bo, Sun Ai-Ping. Synergistic current drive of helicon wave and lower hybrid wave in HL-2M. Acta Physica Sinica, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [3] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [4] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [5] Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu. Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak. Acta Physica Sinica, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [6] Yin Jiao, Xiao Guo-Liang, Chen Cheng-Yuan, Feng Bei-Bin, Zhang Yi-Po, Zhong Wu-Lü. Development and applications of schlieren system for measuring characteristics of supersonic molecular beam. Acta Physica Sinica, 2020, 69(21): 215202. doi: 10.7498/aps.69.20201383
    [7] Zhang Chong-Yang, Liu A-Di, Li Hong, Chen Zhi-Peng, Li Bin, Yang Zhou-Jun, Zhou Chu, Xie Jin-Lin, Lan Tao, Liu Wan-Dong, Zhuang Ge, Yu Chang-Xuan. Application of dual-polarization frequency-modulated microwave reflectometer to J-TEXT tokamak. Acta Physica Sinica, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [8] Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen. Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0. Acta Physica Sinica, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [9] Feng Bei-Bin, Yao Liang-Hua, Chen Cheng-Yuan, Ji Xiao-Quan, Zhong Wu-Lü, Shi Zhong-Bing, Yu De-Liang, Cui Zheng-Ying, Song Xian-Ming, Duan Xu-Ru. Experimental study of L-H transition triggered by supersonic molecular beam injection in the HL-2A tokamak. Acta Physica Sinica, 2013, 62(1): 015203. doi: 10.7498/aps.62.015203
    [10] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [11] Lu Hong-Wei, Zha Xue-Jun, Hu Li-Qun, Lin Shi-Yao, Zhou Rui-Jie, Luo Jia-Rong, Zhong Fang-Chuan. The effect of gas puffing on plasma during slide-away discharge in the HT-7 tokamak. Acta Physica Sinica, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [12] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [13] Xu Qiang, Gao Xiang, Shan Jia-Fang, Hu Li-Qun, Zhao Jun-Yu. Experimental study of large power lower hybrid current drive on HT-7 tokamak. Acta Physica Sinica, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [14] Yao Liang-Hua, Feng Bei-Bin, Chen Cheng-Yuan, Feng Zhen, Li Wei, Jiao Yi-Ming. Recent results of SMBI on the HL-2A tokamak with divertor configuration. Acta Physica Sinica, 2008, 57(7): 4159-4165. doi: 10.7498/aps.57.4159
    [15] Shi Zhong-Bing, Yao Liang-Hua, Ding Xuan-Tong, Duan Xu-Ru, Feng Bei-Bin, Liu Ze-Tian, Xiao Wei-Wen, Sun Hong-Juan, Li Xu, Li Wei, Chen Cheng-Yuan, Jiao Yi-Ming. Experimental study of injection depth and fuelling effects during supersonic molecular beam injection on the HL-2A tokamak. Acta Physica Sinica, 2007, 56(8): 4771-4777. doi: 10.7498/aps.56.4771
    [16] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [17] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [18] Yao Liang-Ye, Feng Bei-Bin, Feng Zhen, Dong Jia-Fu, Li Wen-Zhong, Xu De-Ming, Hong Wen-Yu. . Acta Physica Sinica, 2002, 51(3): 596-602. doi: 10.7498/aps.51.596
    [19] WANG WEN-HAO, YU CHANG-XUAN, XU YU-HONG, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. MEASUREMENT OF EDGE PLASMA PARAMETERS AND THEIR ELECTROSTATIC FLUCTUATIONS ON THE HT-7 SUPERCONDUCTING TOKAMAK. Acta Physica Sinica, 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [20] ZHANG XIAN-MEI, WAN BAO-NIAN, RUAN HUAI-LIN, WU ZHEN-WEI. STUDY OF THE ELECTRON THERMAL CONDUCTIVITY OF THE OHMICALLY HEATED DISCHARGES IN THE HT-7 TOKAMAK. Acta Physica Sinica, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
Metrics
  • Abstract views:  6429
  • PDF Downloads:  136
  • Cited By: 0
Publishing process
  • Received Date:  20 March 2017
  • Accepted Date:  18 June 2017
  • Published Online:  05 October 2017

/

返回文章
返回