Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma

Wang Fu-Qiong Xu Ying-Feng Zha Xue-Jun Zhong Fang-Chuan

Citation:

Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma

Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan
PDF
HTML
Get Citation
  • Accumulation of tungsten (W) in core is a serious challenge for achieving high-performance plasmas in future tokamak reactors, thus W impurity transport is a highly concerned topic in the tokamak physics researches. Multi-fluid model and kinetic model are the numerical tools widely used for investigating and/or predicting impurity behaviors in the boundary of tokamak plasma. Generally, the applicability of multi-fluid model for impurity transport modeling requires that the collision mean-free-path should be smaller than the gradient scale lengths of particles, which may not be always satisfied. It is performed and comparatively investigated to evaluate the applicability of multi-fluid model for W impurity transport modeling, multi-fluid (SOLPS-ITER) modeling and kinetic (DIVIMP) modeling of W impurity transport in the edge of high-confinement plasma in Experimental Advanced Superconducting Tokamak (EAST) during neon impurity seeding. It is found that low-charge-state W ions are mainly located in the divertor region near the target plate where plasma collisionality is relatively high due to the relatively low/high local plasma temperature/density. Hence, the fluid assumption for transport of lowly-charged W ions can be well satisfied. Consequently, the density of lowly-charged W ions predicted by SOLPS-ITER and that calculated by DIVIMP are almost similar. Owing to the fact that the density of highly-charged W ions is relatively low and these particles mainly exist in the upstream (e.g. the main SOL and core) where plasma collisionality is relatively low, the fluid approximation cannot be well satisfied. However, the total W impurity density calculated by the kinetic code DIVIMP and the multi-fluid model SOLPS-ITER are found to be in agreement with each other within a factor of 1.5 for the simulation cases presented in this contribution. Besides, the multi-fluid simulation with bundled charge state model has also been performed, the obtained results are compared with those from the multi-fluid modeling with W ions treated as 74 fluids. It is revealed that in simulation cases with neon impurity seeding and with divertor plasmas in high-recycling or partially detached regimes, the bundling scheme, which is commonly used for saving the computation cost in multi-fluid modeling, tends to overestimate the average charge state of W ions and thus tends to underestimate the radiation power loss, especially in the divertor region. Consequently, under the circumstance that W impurity radiation dominates the radiative power loss in divertor region, plasma temperature/density can be largely overestimated/underestimated, leading to the underestimation of W ion ionization source and W impurity density. Moreover, simulation results demonstrate that W accumulation in core can decrease effectively during divertor detachment promoted by neon seeding.
      Corresponding author: Wang Fu-Qiong, wangfq@dhu.edu.cn
    • Funds: Project supported by the National Magnetic Confinement Fusion Science Program, China (Grant Nos. 2018YFE0309103, 2017YFE0301100, 2017YFE0301104) and the National Natural Science Foundation of China (Grant Nos. 12075052, 12175034).
    [1]

    Ye D W, Ding F, Li K D, Hu Z H, Zhang L, Chen X H, Zhang Q, Zhao P A, He T, Meng L Y, Ye K X, Zhong F B, Duan Y M, Ding R, Wang L, Xu G S, Luo G N, EAST team 2022 Chin. Phys. B 31 065201Google Scholar

    [2]

    Wang F Q, Zha X J, Duan Y M, Mao S T, Wang L, Zhong F C, Liang L, Li L, Lu H W, Hu L Q, Chen Y P, Yang Z D 2018 Plasma Phys. Control. Fusion 60 125005Google Scholar

    [3]

    Yamoto S, Bonnin, X, Homma Y, Inoue H, Hoshino K, Hatayama A, Pitts RA 2017 Nucl. Fusion 57 116051Google Scholar

    [4]

    Kirschner A, Tskhakaya D, Brezinsek S, Borodin D, Romazanov J, Ding R, Eksaeva A, Linsmeier C 2018 Plasma Phys. Control. Fusion 60 014041Google Scholar

    [5]

    Shi S Y, Chen J L, Bourdelle C, Jian X, Odstrcil T, Garofalo A M, Cheng Y X, Chao Y, Zhang L, Duan Y M, Wu M Q, Ding F, Li Y Y, Huang J, Qian J P, Gao X, Wan Y X 2022 Nucl. Fusion 62 066031Google Scholar

    [6]

    Putterich T, Dux R, Neu R, Bernert M, Beurskens M N A, Bobkov V, Brezinsek S, Challis C, Coenen J W, Coffey I, Czarnecka A, Giroud C, Jacquet P, Joffrin E, Kallenbach A, Lehnen M, Lerche E, de la Luna E, Marsen S, Matthews G, Mayoral M L, McDermott R M, Meigs A, Mlynar J, Sertoli M, van Rooij G 2013 Plasma Phys. Control. Fusion 55 124036Google Scholar

    [7]

    Robert A 1997 IEEE Trans. Plasma Sci. 25 1187Google Scholar

    [8]

    Motojima O 2015 Nucl. Fusion 55 104023Google Scholar

    [9]

    Hinnov E, Mattioli M 1978 Phys. Lett. A 66 109Google Scholar

    [10]

    Isler R, Neidigh R, Cowan R 1977 Phys. Lett. A 63 295Google Scholar

    [11]

    Neu R, Dux R, Geier A, Greuner H, Krieger K, Maier H, Pugno R, Rohde V, Yoon S W 2003 J. Nucl. Mater. 313–316 116

    [12]

    Zhang L, Morita S, Xu Z, Zhang P F, Zang Q, Duan Y M, Liu H Q, Zhao H L, Ding F, Ohishi T, Gao W, Huang J, Yang X D, Chen Y J, Wu Z W, Xu P, Ding B J, Hu C D, Gong X Z, Chen J L, Hu L Q 2017 Nucl. Mater. Energy 12 774Google Scholar

    [13]

    Wagner F, Becker G, Behringer K, Campbell D, Eberhagen A, Engelhardt W, Fussmann G, Gehre O, Gernhardt J, Vongierke G, Haas G, Huang M, Karger F, Keilhacker M, Klüber O, Kornherr M, Lackner K, Lisitano G, Lister G G, Mayer H M, Meisel D, Müller E R, Murmann H, Niedermeyer H, Poschenrieder W, Rapp H, Röhr H, Schneider F, Siller G, Speth E, Stäbler A, Steuer K H, Venus G, Vollmer O, Yü Z 1982 Phys. Rev. Lett. 49 1408Google Scholar

    [14]

    杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真 2013 物理学报 62 245206Google Scholar

    Du H L, Sang C F, Wang L, Sun J Z, Liu S C, Wang H Q, Zhang L, Guo H Y, Wang D Z 2013 Acta Phys. Sin. 62 245206Google Scholar

    [15]

    Dux R, Peeters A G, Gude A, Kallenbach A, Neu R, ASDEX Upgrade Team 1999 Nucl. Fusion 39 1509Google Scholar

    [16]

    张文敏, 张凌, 程云鑫, 王正汹, 胡爱兰, 段艳敏, 周天富, 刘海庆 2022 物理学报 71 115203Google Scholar

    Zhang W M, Zhang L, Cheng Y X, Wang Z X, Hu A L, Duan Y M, Zhou T F, Liu H Q 2022 Acta Phys. Sin. 71 115203Google Scholar

    [17]

    沈勇, 董家齐, 徐红兵 2018 物理学报 67 195203Google Scholar

    Shen Y, Dong J Q, Xu H B 2018 Acta Phys. Sin. 67 195203Google Scholar

    [18]

    Ciraolo G, Di Genova S, Yang H, Gallo A, Fedorczak N, Bufferand H, Gunn J P, Tamain P, Guirlet R, Guillemaut C, Desgranges C, Bourdelle C, Tsitrone E, Bucalossi J, D'Abusco M S, Serre E, Marandet Y, Raghunathan M, Sepetys A, Romazanov J, Kirschner A, Brezinsek S 2021 Nucl. Fusion 61 126015Google Scholar

    [19]

    Geier A, Krieger K, Elder J D, Pugno R, Rohde V 2003 J. Nucl. Mater. 313–316 1216

    [20]

    Lim K, Garbet X, Sarazin Y, Grandgirard V, Obrejan K, Lesur M, Gravier E 2021 Nucl. Fusion 61 046037Google Scholar

    [21]

    van Vugt D C, Huijsmans G T A, Hoelzl M, Loarte A 2019 Phys. Plasmas 26 042508Google Scholar

    [22]

    Sinclair G, Maurizio R, Ma X, Abrams T, Elder J D, Guo H Y, Thomas D M, Leonard A W 2022 Nucl. Fusion 62 106024Google Scholar

    [23]

    Sang C F, Zhou Q R, Xu G S, Wang L, Wang Y L, Zhao X L, Zhang C, Ding R, Jia G Z, Yao D M, Liu X J, Si H, Wang D Z 2021 Nucl. Fusion 61 066004Google Scholar

    [24]

    Schmid K, Krieger K, Kukushkin A, Loarte A 2007 J. Nucl. Mater. 363–365 674

    [25]

    Wiesen S, Reiter D, Kotov V, Baelmans M, Dekeyser W, Kukushkin A S, Lisgo S W, Pitts R A, Rozhansky V, Saibene G, Veselova I, Voskoboynikov S 2015 J. Nucl. Mater. 463 480Google Scholar

    [26]

    Bonnin X, Dekeyser W, Pitts R, Coster D, Voskoboynikov S, Wiesen S 2016 Plasma Fusion Res. 11 1403102Google Scholar

    [27]

    Strachan J D, Corrigan G, Harting D, Lauro-Taroni L, Maggi C F, Matthews G F, O'Mullane M, Reiter D, Seebacher J, Spence J, Summers H, Wiesen S 2011 J. Nucl. Mater. 415 S501Google Scholar

    [28]

    Harting D, Groth M, Beurskens M, Boerner P, Brix M, Coenen J W, Corrigan G, Lehnen M, Marsen S, van Rooij G, Reiter D, Wiesen S 2013 J. Nucl. Mater. 438 S480Google Scholar

    [29]

    Stangeby P C, Elder J D 1995 Nucl. Fusion 35 1391Google Scholar

    [30]

    Yamoto S, Homma Y, Hoshino K, Toma M, Hatayama A 2020 Comput. Phys. Commun. 248 106979Google Scholar

    [31]

    Wang J, Chen Y P, Wang L, Gao W, Wu Z W, Zhang L 2023 Phys. Plasmas 30 043905Google Scholar

    [32]

    Song Y T, Wan B N, Gong X Z, et al. 2022 IEEE Trans. Plasma Sci. 50 4330Google Scholar

    [33]

    Wang F Q, Liang Y, Zha X J, Zhong F C, Mao S T, Duan Y M, Hu L Q, Wang L, Liu J B, Yan N, Liu S C 2022 Nucl. Fusion 62 056021Google Scholar

    [34]

    Pan O, Bernert M, Lunt T, Cavedon M, Kurzan B, Wiesen S, Wischmeier M, Stroth U 2023 Nucl. Fusion 63 016001Google Scholar

    [35]

    Kaveeva E, Rozhansky V, Veselova I, Senichenkov I, Giroud C, Pitts R A, Wiesen S, Voskoboynikov S 2021 Nucl. Mater. Energy 28 101030Google Scholar

    [36]

    Koenders J T W, Wensing M, Ravensbergen T, Fevrier O, Perek A, van Berkel M 2022 Nucl. Fusion 62 066025Google Scholar

    [37]

    Kaveeva E, Rozhansky V, Senichenkov I, Sytova E, Veselova I, Voskoboynikov S, Bonnin X, Pitts R A, Kukushkin A S, Wiesen S, Coster D 2020 Nucl. Fusion 60 046019Google Scholar

    [38]

    Senichenkov I Y, Ding R, Molchanov P A, Kaveeva E G, Rozhansky V A, Voskoboynikov S P, Shtyrkhunov N V, Makarov S O, Si H, Liu X, Sang C, Mao S 2022 Nucl. Fusion 62 096010Google Scholar

    [39]

    Kumpulainen H A, Groth M, Fontell M, Jaervinen A E, Corrigan G, Harting D 2020 Nucl. Mater. Energy 25 100784Google Scholar

    [40]

    Jarvinen A, Giroud C, Groth M, Krieger K, Moulton D, Wiesen S, Brezinsek S 2011 Phys. Scr. 2011 014013

    [41]

    Rozhansky V, Kaveeva E, Molchanov P, Veselova I, Voskoboynikov S, Coster D, Counsell G, Kirk A, Lisgo S 2009 Nucl. Fusion 49 025007Google Scholar

    [42]

    Reiter D, Baelmans M, Börner P 2005 Fusion Sci. Technol. 47 172Google Scholar

    [43]

    Schneider R, Bonnin X, Borrass K, Coster D P, Kastelewicz H, Reiter A, Rozhansky V A, Braams B J 2006 Contrib. Plasma Phys. 46 3Google Scholar

    [44]

    Wang R, Yang Z S, Li K D, Xu G S, Jia G Z, Niu G J, Nian F F, He T, Meng L Y, Lin X, Luo G N, Wang L 2022 Phys. Plasmas 29 112502Google Scholar

    [45]

    Hechtl E, Bohdansky J, Roth J 1981 J. Nucl. Mater. 103 333Google Scholar

    [46]

    Gao S L, Liu X J, Deng G Z, Ming T F, Li G Q, Zhang X X, Wu X D, Wu X H, Li B, Fan H C, Gao X 2022 Plasma Sci. Technol. 24 075104Google Scholar

    [47]

    欧靖, 杨锦宏 2012 物理学报 61 075201Google Scholar

    Ou J, Yang J H 2012 Acta Phys. Sin. 61 075201Google Scholar

    [48]

    Summers H P, O'Mullane M G 2000 AIP Conference Proceedings 543 304Google Scholar

    [49]

    Putterich T, Fable E, Dux R, O'Mullane M, Neu R, Siccinio M 2019 Nucl. Fusion 59 056013Google Scholar

  • 图 1  (a) 80443炮放电在6.5 s时刻的磁场位形; (b) SOLPS-ITER及DIVIMP计算网格

    Figure 1.  (a) Magnetic configuration for shot #80443 at t = 6.5 s; (b) grid meshes for SOLPS-ITER and DIVIMP calculations.

    图 2  模拟中设定的径向输运系数($ r-{r}_{{\rm{s}}{\rm{e}}{\rm{p}}} < 0 $代表芯部, $ r-{r}_{{\rm{s}}{\rm{e}}{\rm{p}}} > 0 $代表刮削层)

    Figure 2.  Radial transport coefficients specified in the simulations ($ r-{r}_{{\rm{s}}{\rm{e}}{\rm{p}}} < 0 $ for core, $ r-{r}_{{\rm{s}}{\rm{e}}{\rm{p}}} > 0 $ for SOL).

    图 3  SOLPS-ITER采用不同钨离子流体方案(蓝色代表方案1, 即74种流体; 红色代表方案2, —价态捆绑减为23种流体)计算所得外中平面处等离子体密度(a)和温度(b)的径向分布

    Figure 3.  Radial profiles of plasma density (a) and temperature (b) at the outer mid-plane calculated by SOLPS-ITER using the full-charge-states (blue, 74 fluids) and bundled-charge-states (red, 23 fluids) fluid models.

    图 4  SOLPS-ITER采用不同钨离子流体方案计算所得偏滤器靶板等离子体密度(a), (b)和温度(c), (d)分布

    Figure 4.  Radial profiles of plasma density (a), (b) and temperature (c), (d) at the inner (a), (c) and outer (b), (d) target plates, calculated by SOLPS-ITER using the full-charge-states and bundled-charge-states fluid models.

    图 5  不同模型计算得到的钨杂质密度二维分布 (a) 流体模型(SOLPS-ITER)将钨离子看作74种流体; (b) 流体模型(SOLPS-ITER)将部分价态钨离子捆绑(bundled) ; (c) 动力学模型(DIVIMP)

    Figure 5.  Two-dimensional distribution of tungsten impurity density calculated by different models: (a) SOLPS-ITER using full-charge-states fluid model; (b) SOLPS-ITER using bundled-charge-states model; (c) DIVIMP.

    图 6  不同模型计算所得钨杂质沿(a)内偏滤器靶板、(b)外偏滤器靶板、(c)中平面等处的径向分布, (d)及其在刮削层中第一个磁通管上的极向分布(横轴为距外靶板的极向距离). 注意: 图6(d)纵轴为对数坐标

    Figure 6.  Calculated radial profiles of tungsten impurity density at the inner/outer target plate (a)/(b) and outer mid-plane (c) together with the poloidal profile of tungsten impurity density along the flux surface in the SOL near the separatrix (d). It is notable that the vertical axis is logarithmically scaled in panel (d).

    图 7  SOLPS-ITER采用不同流体方案计算所得各网格中钨杂质平均电离态, 横轴为网格中的电子温度

    Figure 7.  Average charge state of W ions in each grid cell plotted against the local electron temperature for SOLPS-ITER with full-charge-states fluid model and bundled-charge-states model.

    图 8  SOLPS-ITER和DIVIMP计算所得不同价态钨杂质离子密度沿磁面的极向分布 (a) W1+—W10+; (b) W11+—W15+; (c) W16+—W20+; (d) W21+—W74+. 图中横轴为到外靶板的极向距离

    Figure 8.  Poloidal profiles for W ions at different charge states calculated by SOLPS-ITER and DIVIMP: (a) W1+—W10+; (b) W11+—W15+; (c) W16+—W20+; (d) W21+—W74+. The vertical coordinates represent the poloidal distance from the outer target measured in the upstream direction.

    图 9  当氖杂质注入率为2×1019 s–1 (a)和5×1019 s–1 (b)时, 计算得到的钨杂质含量($ {c}_{{\rm{W}}}={n}_{{\rm{W}}}/{n}_{{\rm{e}}} $).

    Figure 9.  W plasma content ($ {c}_{{\rm{W}}}={n}_{{\rm{W}}}/{n}_{{\rm{e}}} $) for neon seeding level at 2×1019 s–1 (a) and 5×1019 s–1 (b).

    表 1  SOLPS-ITER采用不同流体方案计算所得+1价钨离子(W1+)电离源在外偏滤器区域(OD)、内偏滤器区域(ID)、刮削层(SOL)及芯部(core)的强度(单位: 1019 s–1)

    Table 1.  Strength of W1+ ionization source from neutrals in the outer divertor (OD), inner divertor (ID), scrape-off layer (SOL) and core calculated by SOLPS-ITER using different fluid models (in 1019 s–1).

    Fluid models OD ID SOL Core Total
    Bundled-charge-states 9.31 0.93 0.002 $ \sim 0 $ 10.2
    Full-charge-states 38.7 10.2 0.04 $ \sim 0 $ 48.9
    DownLoad: CSV

    表 2  SOLPS-ITER采用不同流体模型计算所得不同离子在内/外靶板(IT/OT)的通量及靶板总通量(单位: s–1)

    Table 2.  Total target fluxes of deuterium (D), neon (Ne) and tungsten (W) together with the D, Ne and W ion fluxes at the inner/outer divertor target (IT/OT) (in s–1), calculated by SOLPS-ITER.

    Fluid modelSpeciesOT/1019IT/1018Total/1020
    Bundled-charge-statesD228026500493
    Ne7.4643.21.18
    W9.269.201.02
    Full-charge-statesD236024800484
    Ne6.1344.71.06
    W37.898.74.76
    DownLoad: CSV

    表 3  SOLPS-ITER采用不同流体模型计算所得氘(D)、氖(Ne)以及钨(W)辐射功率损失在内偏滤器区域(ID)、外偏滤器区域(OD)、刮削层(SOL)及芯部(Core)的分布(单位: kW)

    Table 3.  Contributions of deuterium (D), neon (Ne) and tungsten (W) to radiation power loss in the inner/outer divertor region (ID/OD), scrape-off layer (SOL) and core calculated by SOLPS-ITER using the full-charge-states model and bundled-charge-states model (in kW).

    Fluid modelIDODSOLCoreTotal
    Bundled-charge-statesD20.7625.0313.591.7561.13
    Ne23.5626.5073.5789.08212.71
    W46.0731.0710.081.2888.50
    Full-charge-statesD21.5926.5414.101.7263.95
    Ne28.5128.8179.4394.10230.85
    W386.26237.4532.116.69662.51
    DownLoad: CSV
  • [1]

    Ye D W, Ding F, Li K D, Hu Z H, Zhang L, Chen X H, Zhang Q, Zhao P A, He T, Meng L Y, Ye K X, Zhong F B, Duan Y M, Ding R, Wang L, Xu G S, Luo G N, EAST team 2022 Chin. Phys. B 31 065201Google Scholar

    [2]

    Wang F Q, Zha X J, Duan Y M, Mao S T, Wang L, Zhong F C, Liang L, Li L, Lu H W, Hu L Q, Chen Y P, Yang Z D 2018 Plasma Phys. Control. Fusion 60 125005Google Scholar

    [3]

    Yamoto S, Bonnin, X, Homma Y, Inoue H, Hoshino K, Hatayama A, Pitts RA 2017 Nucl. Fusion 57 116051Google Scholar

    [4]

    Kirschner A, Tskhakaya D, Brezinsek S, Borodin D, Romazanov J, Ding R, Eksaeva A, Linsmeier C 2018 Plasma Phys. Control. Fusion 60 014041Google Scholar

    [5]

    Shi S Y, Chen J L, Bourdelle C, Jian X, Odstrcil T, Garofalo A M, Cheng Y X, Chao Y, Zhang L, Duan Y M, Wu M Q, Ding F, Li Y Y, Huang J, Qian J P, Gao X, Wan Y X 2022 Nucl. Fusion 62 066031Google Scholar

    [6]

    Putterich T, Dux R, Neu R, Bernert M, Beurskens M N A, Bobkov V, Brezinsek S, Challis C, Coenen J W, Coffey I, Czarnecka A, Giroud C, Jacquet P, Joffrin E, Kallenbach A, Lehnen M, Lerche E, de la Luna E, Marsen S, Matthews G, Mayoral M L, McDermott R M, Meigs A, Mlynar J, Sertoli M, van Rooij G 2013 Plasma Phys. Control. Fusion 55 124036Google Scholar

    [7]

    Robert A 1997 IEEE Trans. Plasma Sci. 25 1187Google Scholar

    [8]

    Motojima O 2015 Nucl. Fusion 55 104023Google Scholar

    [9]

    Hinnov E, Mattioli M 1978 Phys. Lett. A 66 109Google Scholar

    [10]

    Isler R, Neidigh R, Cowan R 1977 Phys. Lett. A 63 295Google Scholar

    [11]

    Neu R, Dux R, Geier A, Greuner H, Krieger K, Maier H, Pugno R, Rohde V, Yoon S W 2003 J. Nucl. Mater. 313–316 116

    [12]

    Zhang L, Morita S, Xu Z, Zhang P F, Zang Q, Duan Y M, Liu H Q, Zhao H L, Ding F, Ohishi T, Gao W, Huang J, Yang X D, Chen Y J, Wu Z W, Xu P, Ding B J, Hu C D, Gong X Z, Chen J L, Hu L Q 2017 Nucl. Mater. Energy 12 774Google Scholar

    [13]

    Wagner F, Becker G, Behringer K, Campbell D, Eberhagen A, Engelhardt W, Fussmann G, Gehre O, Gernhardt J, Vongierke G, Haas G, Huang M, Karger F, Keilhacker M, Klüber O, Kornherr M, Lackner K, Lisitano G, Lister G G, Mayer H M, Meisel D, Müller E R, Murmann H, Niedermeyer H, Poschenrieder W, Rapp H, Röhr H, Schneider F, Siller G, Speth E, Stäbler A, Steuer K H, Venus G, Vollmer O, Yü Z 1982 Phys. Rev. Lett. 49 1408Google Scholar

    [14]

    杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真 2013 物理学报 62 245206Google Scholar

    Du H L, Sang C F, Wang L, Sun J Z, Liu S C, Wang H Q, Zhang L, Guo H Y, Wang D Z 2013 Acta Phys. Sin. 62 245206Google Scholar

    [15]

    Dux R, Peeters A G, Gude A, Kallenbach A, Neu R, ASDEX Upgrade Team 1999 Nucl. Fusion 39 1509Google Scholar

    [16]

    张文敏, 张凌, 程云鑫, 王正汹, 胡爱兰, 段艳敏, 周天富, 刘海庆 2022 物理学报 71 115203Google Scholar

    Zhang W M, Zhang L, Cheng Y X, Wang Z X, Hu A L, Duan Y M, Zhou T F, Liu H Q 2022 Acta Phys. Sin. 71 115203Google Scholar

    [17]

    沈勇, 董家齐, 徐红兵 2018 物理学报 67 195203Google Scholar

    Shen Y, Dong J Q, Xu H B 2018 Acta Phys. Sin. 67 195203Google Scholar

    [18]

    Ciraolo G, Di Genova S, Yang H, Gallo A, Fedorczak N, Bufferand H, Gunn J P, Tamain P, Guirlet R, Guillemaut C, Desgranges C, Bourdelle C, Tsitrone E, Bucalossi J, D'Abusco M S, Serre E, Marandet Y, Raghunathan M, Sepetys A, Romazanov J, Kirschner A, Brezinsek S 2021 Nucl. Fusion 61 126015Google Scholar

    [19]

    Geier A, Krieger K, Elder J D, Pugno R, Rohde V 2003 J. Nucl. Mater. 313–316 1216

    [20]

    Lim K, Garbet X, Sarazin Y, Grandgirard V, Obrejan K, Lesur M, Gravier E 2021 Nucl. Fusion 61 046037Google Scholar

    [21]

    van Vugt D C, Huijsmans G T A, Hoelzl M, Loarte A 2019 Phys. Plasmas 26 042508Google Scholar

    [22]

    Sinclair G, Maurizio R, Ma X, Abrams T, Elder J D, Guo H Y, Thomas D M, Leonard A W 2022 Nucl. Fusion 62 106024Google Scholar

    [23]

    Sang C F, Zhou Q R, Xu G S, Wang L, Wang Y L, Zhao X L, Zhang C, Ding R, Jia G Z, Yao D M, Liu X J, Si H, Wang D Z 2021 Nucl. Fusion 61 066004Google Scholar

    [24]

    Schmid K, Krieger K, Kukushkin A, Loarte A 2007 J. Nucl. Mater. 363–365 674

    [25]

    Wiesen S, Reiter D, Kotov V, Baelmans M, Dekeyser W, Kukushkin A S, Lisgo S W, Pitts R A, Rozhansky V, Saibene G, Veselova I, Voskoboynikov S 2015 J. Nucl. Mater. 463 480Google Scholar

    [26]

    Bonnin X, Dekeyser W, Pitts R, Coster D, Voskoboynikov S, Wiesen S 2016 Plasma Fusion Res. 11 1403102Google Scholar

    [27]

    Strachan J D, Corrigan G, Harting D, Lauro-Taroni L, Maggi C F, Matthews G F, O'Mullane M, Reiter D, Seebacher J, Spence J, Summers H, Wiesen S 2011 J. Nucl. Mater. 415 S501Google Scholar

    [28]

    Harting D, Groth M, Beurskens M, Boerner P, Brix M, Coenen J W, Corrigan G, Lehnen M, Marsen S, van Rooij G, Reiter D, Wiesen S 2013 J. Nucl. Mater. 438 S480Google Scholar

    [29]

    Stangeby P C, Elder J D 1995 Nucl. Fusion 35 1391Google Scholar

    [30]

    Yamoto S, Homma Y, Hoshino K, Toma M, Hatayama A 2020 Comput. Phys. Commun. 248 106979Google Scholar

    [31]

    Wang J, Chen Y P, Wang L, Gao W, Wu Z W, Zhang L 2023 Phys. Plasmas 30 043905Google Scholar

    [32]

    Song Y T, Wan B N, Gong X Z, et al. 2022 IEEE Trans. Plasma Sci. 50 4330Google Scholar

    [33]

    Wang F Q, Liang Y, Zha X J, Zhong F C, Mao S T, Duan Y M, Hu L Q, Wang L, Liu J B, Yan N, Liu S C 2022 Nucl. Fusion 62 056021Google Scholar

    [34]

    Pan O, Bernert M, Lunt T, Cavedon M, Kurzan B, Wiesen S, Wischmeier M, Stroth U 2023 Nucl. Fusion 63 016001Google Scholar

    [35]

    Kaveeva E, Rozhansky V, Veselova I, Senichenkov I, Giroud C, Pitts R A, Wiesen S, Voskoboynikov S 2021 Nucl. Mater. Energy 28 101030Google Scholar

    [36]

    Koenders J T W, Wensing M, Ravensbergen T, Fevrier O, Perek A, van Berkel M 2022 Nucl. Fusion 62 066025Google Scholar

    [37]

    Kaveeva E, Rozhansky V, Senichenkov I, Sytova E, Veselova I, Voskoboynikov S, Bonnin X, Pitts R A, Kukushkin A S, Wiesen S, Coster D 2020 Nucl. Fusion 60 046019Google Scholar

    [38]

    Senichenkov I Y, Ding R, Molchanov P A, Kaveeva E G, Rozhansky V A, Voskoboynikov S P, Shtyrkhunov N V, Makarov S O, Si H, Liu X, Sang C, Mao S 2022 Nucl. Fusion 62 096010Google Scholar

    [39]

    Kumpulainen H A, Groth M, Fontell M, Jaervinen A E, Corrigan G, Harting D 2020 Nucl. Mater. Energy 25 100784Google Scholar

    [40]

    Jarvinen A, Giroud C, Groth M, Krieger K, Moulton D, Wiesen S, Brezinsek S 2011 Phys. Scr. 2011 014013

    [41]

    Rozhansky V, Kaveeva E, Molchanov P, Veselova I, Voskoboynikov S, Coster D, Counsell G, Kirk A, Lisgo S 2009 Nucl. Fusion 49 025007Google Scholar

    [42]

    Reiter D, Baelmans M, Börner P 2005 Fusion Sci. Technol. 47 172Google Scholar

    [43]

    Schneider R, Bonnin X, Borrass K, Coster D P, Kastelewicz H, Reiter A, Rozhansky V A, Braams B J 2006 Contrib. Plasma Phys. 46 3Google Scholar

    [44]

    Wang R, Yang Z S, Li K D, Xu G S, Jia G Z, Niu G J, Nian F F, He T, Meng L Y, Lin X, Luo G N, Wang L 2022 Phys. Plasmas 29 112502Google Scholar

    [45]

    Hechtl E, Bohdansky J, Roth J 1981 J. Nucl. Mater. 103 333Google Scholar

    [46]

    Gao S L, Liu X J, Deng G Z, Ming T F, Li G Q, Zhang X X, Wu X D, Wu X H, Li B, Fan H C, Gao X 2022 Plasma Sci. Technol. 24 075104Google Scholar

    [47]

    欧靖, 杨锦宏 2012 物理学报 61 075201Google Scholar

    Ou J, Yang J H 2012 Acta Phys. Sin. 61 075201Google Scholar

    [48]

    Summers H P, O'Mullane M G 2000 AIP Conference Proceedings 543 304Google Scholar

    [49]

    Putterich T, Fable E, Dux R, O'Mullane M, Neu R, Siccinio M 2019 Nucl. Fusion 59 056013Google Scholar

  • [1] Zhang Qi-Fan, Le Wen-Cheng, Zhang Yu-Hao, Ge Zhong-Xin, Kuang Zhi-Qiang, Xiao Sheng-Yang, Wang Lu. Effects of radiation from tungsten impurities on the thermal energy loss during the fast thermal quench stage of major disruption in tokamak plasmas. Acta Physica Sinica, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [2] Liu Guan-Nan, LI Xin-Xia, Liu Hong-Bo, Sun Ai-Ping. Synergistic current drive of helicon wave and lower hybrid wave in HL-2M. Acta Physica Sinica, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [3] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [4] Zhu Xiao-Long, Chen Wei, Wang Feng, Wang Zheng-Xiong. Hybrid numerical simulation on fast particle transport induced by synergistic interaction of low- and medium-frequency magnetohydrodynamic instabilities in tokamak plasma. Acta Physica Sinica, 2023, 72(21): 215210. doi: 10.7498/aps.72.20230620
    [5] Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu. Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak. Acta Physica Sinica, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [6] Zhang Tai-Yang, Chen Ran. A collisional-radiative model for lithium impurity in plasma boundary region of Experimental Advanced Superconducting Tokamak. Acta Physica Sinica, 2017, 66(12): 125201. doi: 10.7498/aps.66.125201
    [7] Zhang Chong-Yang, Liu A-Di, Li Hong, Chen Zhi-Peng, Li Bin, Yang Zhou-Jun, Zhou Chu, Xie Jin-Lin, Lan Tao, Liu Wan-Dong, Zhuang Ge, Yu Chang-Xuan. Application of dual-polarization frequency-modulated microwave reflectometer to J-TEXT tokamak. Acta Physica Sinica, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [8] Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Ding Fang, Wang De-Zhen. Numerical study of the erosion of the EAST tungsten divertor targets caused by edge localized modes. Acta Physica Sinica, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [9] Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen. Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0. Acta Physica Sinica, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [10] Lu Hong-Wei, Zha Xue-Jun, Hu Li-Qun, Lin Shi-Yao, Zhou Rui-Jie, Luo Jia-Rong, Zhong Fang-Chuan. The effect of gas puffing on plasma during slide-away discharge in the HT-7 tokamak. Acta Physica Sinica, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [11] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [12] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [13] Xu Qiang, Gao Xiang, Shan Jia-Fang, Hu Li-Qun, Zhao Jun-Yu. Experimental study of large power lower hybrid current drive on HT-7 tokamak. Acta Physica Sinica, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [14] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [15] Xu Hai-Ying, Zhao Zhi-Gang, Liu Mei. Spectrum analysis of voltage noise of moving vortex lattice and dynamic phase transition. Acta Physica Sinica, 2005, 54(6): 2924-2928. doi: 10.7498/aps.54.2924
    [16] Wang Lu-Xia, Zhang Da-Cheng, Liu De-Sheng, Han Sheng-Hao, Xie Shi-Jie. Dynamics of polarons and bipolarons in nondegenerate polymers. Acta Physica Sinica, 2003, 52(10): 2547-2552. doi: 10.7498/aps.52.2547
    [17] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [18] WANG WEN-HAO, YU CHANG-XUAN, XU YU-HONG, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. MEASUREMENT OF EDGE PLASMA PARAMETERS AND THEIR ELECTROSTATIC FLUCTUATIONS ON THE HT-7 SUPERCONDUCTING TOKAMAK. Acta Physica Sinica, 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [19] WANG WEN-HAO, XU YU-HONG, YU CHANG-XUAN, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. ELECTROSTATIC FLUCTUATIONS AND TURBULENT TRANSPORT STUDIES IN THE HT-7 SUPERCONDUCTING TOKAMAK EDGE PLASMAS . Acta Physica Sinica, 2001, 50(10): 1956-1963. doi: 10.7498/aps.50.1956
    [20] SHI BING-REN. ANALYTIC STUDY OF LOWER HYBRID WAVE PROPAGATION IN TOKAMAK LHCD EXPERIMENTS. Acta Physica Sinica, 2000, 49(12): 2394-2398. doi: 10.7498/aps.49.2394
Metrics
  • Abstract views:  2685
  • PDF Downloads:  111
  • Cited By: 0
Publishing process
  • Received Date:  15 June 2023
  • Accepted Date:  25 July 2023
  • Available Online:  24 August 2023
  • Published Online:  05 November 2023

/

返回文章
返回