搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东方超环(EAST)装置中等离子体边界锂杂质的碰撞-辐射模型

章太阳 陈冉

引用本文:
Citation:

东方超环(EAST)装置中等离子体边界锂杂质的碰撞-辐射模型

章太阳, 陈冉

A collisional-radiative model for lithium impurity in plasma boundary region of Experimental Advanced Superconducting Tokamak

Zhang Tai-Yang, Chen Ran
PDF
导出引用
  • 在东方超环(EAST)装置中,由于大量锂化壁处理的使用,切向可见光摄像机拍摄到等离子体边界通常存在一条由锂(Li)杂质形成的绿色发光带.本文基于EAST边界等离子体参数条件,基于碰撞-辐射模型给出由已知边界等离子体状态推算Li绿光光强的空间分布的具体方法,并针对简化后的一维径向分布问题,收集、处理OPEN-ADAS数据库的数据,采用软件Mathematica 10.4.1编写相应的数值计算程序,分别输入EAST工作于低约束(L)与高约束(H)模时获得的两组边界电子温度、密度分布数据,给出并分析比较了利用该模型的计算结果.此项工作对于未来建立通过测量及反演边界锂杂质特征谱线强度的空间分布来重构边界等离子体状态的全新技术和研究存在三维磁场扰动条件下的边界等离子体行为均具有重要的理论参考价值.
    A green emission layer caused by lithium impurity is universally observed in plasma boundary region of Experimental Advanced Superconducting Tokamak (EAST) via a visible-light camera, where lithium coating is normally adopted as a routine technique of wall conditioning. In this article, in order to estimate the spatial distribution of green light intensity of this emission layer according to the given real parameter distributions of edge plasmas, a practicable method is proposed based on a collisional-radiative model. In this model, a finite number of energy levels of lithium are taken into account, and proper simplifications of convection-diffusion equations are made according to the order-of-magnitude analysis. We process the atomic data collected from the OPEN-ADAS database, and develop a corresponding program in Mathematica 10.4.1 to solve the simplified one-dimensional problem numerically. Estimation results are obtained respectively for the two sets of edge plasma profiles of EAST in L-mode and H-mode regimes, and both clearly show a good unimodal structure of the spatial distribution of green light intensity of this emission layer. These analyses actually provide the spatial distributions of lithium impurities at different energy levels, not only indicating the spatial distribution of the intensity of this emission layer induced by lithium impurity but also revealing the physical processes that lithium experiences in edge plasma. There are some different and common characteristics in the spatial distribution of the intensity of this emission layer in these two important cases. This emission layer is kept outside the last closed magnetic surface in both cases while it becomes thinner with a higher intensity peak in H-mode case. Besides, the sensitivity of this algorithm to the measurement error of edge plasma profile is also explored in this work. It is found that the relative errors of the numerical results obtained by our proposed method are comparable to those of edge plasma profiles. This work provides important theoretical references for developing a new practical technique of fast reconstructing edge plasma configurations in EAST based on the emission of lithium impurity, and may further contribute a lot to the studies of edge plasma behaviors when three-dimensional perturbation fields are adopted.
      通信作者: 陈冉, chenran@ipp.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11675220)资助的课题.
      Corresponding author: Chen Ran, chenran@ipp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11675220).
    [1]

    ITER Physics Expert Groups on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database, ITER Physics Basis Editors 1999 Nucl. Fusion 39 2175

    [2]

    Sun Y, Liang Y F, Qian J P, Shen B, Wan B 2015 Plasma Phys. Control. Fusion 57 045003

    [3]

    Zuo G Z, Hu J S, Li J G, Luo N C, Hu L Q, Fu J, Chen K Y, Ti A, Zhang L L 2010 Plasma Sci. Technol. 12 646

    [4]

    Xu J C, Wang F D, L B, Shen Y C, Li Y Y, Fu J, Shi Y J 2012 Acta Phys. Sin. 61 145203 (in Chinese) [徐经翠, 王福地, 吕波, 沈永才, 李颖颖, 符佳, 石跃江 2012 物理学报 61 145203]

    [5]

    Wnderlich D, Dietrich S, Fantz U 2009 J. Quant. Spectrosc. Radiat. Transfer 110 62

    [6]

    Goto M 2003 J. Quant. Spectrosc. Radiat. Transfer 76 331

    [7]

    Yu Y Q, Xin Y, Ning Z Y 2011 Chin. Phys. B 20 015207

    [8]

    Peng F, Jiang G, Zhu Z H 2006 Chin. Phys. Lett. 23 3245

    [9]

    Wang J, Zhang H, Cheng X L 2013 Chin. Phys. B 22 085201

    [10]

    Xie H Q, Tan Y, Liu Y Q, Wang W H, Gao Z 2014 Acta Phys. Sin. 63 125203 (in Chinese) [谢会乔, 谭熠, 刘阳青, 王文浩, 高喆 2014 物理学报 63 125203]

    [11]

    Goto M, Fujimoto T 1997 Fusion Eng. Des. 34 759

    [12]

    van der Sijde B, van der Mullen J J A M, Schram D C 1984 Beitr. Plasmaphys. 24 447

    [13]

    Summers H P, Dickson W J, O'Mullane M G, Badnell N R, Whiteford A D, Brooks D H, Lang J, Loch S D, Griffin D C 2006 Plasma Phys. Control. Fusion 48 263

    [14]

    Greenland P T 2001 Proc. R. Soc. Lond. A 457 1821

    [15]

    Janev R K 1995 Atomic and Molecular Processes in Fusion Edge Plasmas (New York: Springer Science+Business Media) pp9-63

    [16]

    Wiese W L, Fuhr J R 2009 J. Phys. Chem. Ref. 38 565

    [17]

    Fujimoto T 1979 J. Quant. Spectrosc. Radiat. Transfer 21 439

    [18]

    Kato T, Nakazaki S 1989 At. Data Nucl. Data Tables 42 313

    [19]

    Voronov G S 1997 At. Data Nucl. Data Tables 65 1

    [20]

    Summers H P, O'Mullane M G 2011 AIP Conf. Proc. 1344 179

  • [1]

    ITER Physics Expert Groups on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database, ITER Physics Basis Editors 1999 Nucl. Fusion 39 2175

    [2]

    Sun Y, Liang Y F, Qian J P, Shen B, Wan B 2015 Plasma Phys. Control. Fusion 57 045003

    [3]

    Zuo G Z, Hu J S, Li J G, Luo N C, Hu L Q, Fu J, Chen K Y, Ti A, Zhang L L 2010 Plasma Sci. Technol. 12 646

    [4]

    Xu J C, Wang F D, L B, Shen Y C, Li Y Y, Fu J, Shi Y J 2012 Acta Phys. Sin. 61 145203 (in Chinese) [徐经翠, 王福地, 吕波, 沈永才, 李颖颖, 符佳, 石跃江 2012 物理学报 61 145203]

    [5]

    Wnderlich D, Dietrich S, Fantz U 2009 J. Quant. Spectrosc. Radiat. Transfer 110 62

    [6]

    Goto M 2003 J. Quant. Spectrosc. Radiat. Transfer 76 331

    [7]

    Yu Y Q, Xin Y, Ning Z Y 2011 Chin. Phys. B 20 015207

    [8]

    Peng F, Jiang G, Zhu Z H 2006 Chin. Phys. Lett. 23 3245

    [9]

    Wang J, Zhang H, Cheng X L 2013 Chin. Phys. B 22 085201

    [10]

    Xie H Q, Tan Y, Liu Y Q, Wang W H, Gao Z 2014 Acta Phys. Sin. 63 125203 (in Chinese) [谢会乔, 谭熠, 刘阳青, 王文浩, 高喆 2014 物理学报 63 125203]

    [11]

    Goto M, Fujimoto T 1997 Fusion Eng. Des. 34 759

    [12]

    van der Sijde B, van der Mullen J J A M, Schram D C 1984 Beitr. Plasmaphys. 24 447

    [13]

    Summers H P, Dickson W J, O'Mullane M G, Badnell N R, Whiteford A D, Brooks D H, Lang J, Loch S D, Griffin D C 2006 Plasma Phys. Control. Fusion 48 263

    [14]

    Greenland P T 2001 Proc. R. Soc. Lond. A 457 1821

    [15]

    Janev R K 1995 Atomic and Molecular Processes in Fusion Edge Plasmas (New York: Springer Science+Business Media) pp9-63

    [16]

    Wiese W L, Fuhr J R 2009 J. Phys. Chem. Ref. 38 565

    [17]

    Fujimoto T 1979 J. Quant. Spectrosc. Radiat. Transfer 21 439

    [18]

    Kato T, Nakazaki S 1989 At. Data Nucl. Data Tables 42 313

    [19]

    Voronov G S 1997 At. Data Nucl. Data Tables 65 1

    [20]

    Summers H P, O'Mullane M G 2011 AIP Conf. Proc. 1344 179

  • [1] 刘冠男, 李新霞, 刘洪波, 孙爱萍. HL-2M托卡马克装置中螺旋波与低杂波的协同电流驱动. 物理学报, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [2] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性. 物理学报, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [3] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟. 物理学报, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [4] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度. 物理学报, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [5] 陈撷宇, 牟茂淋, 苏春燕, 陈少永, 唐昌建. HL-2A中环向旋转影响等离子体对共振磁扰动的响应过程. 物理学报, 2020, 69(19): 195201. doi: 10.7498/aps.69.20200519
    [6] 陈坚, 刘志强, 郭恒, 李和平, 姜东君, 周明胜. 基于气体放电等离子体射流源的模拟离子引出实验平台物理特性. 物理学报, 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [7] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用. 物理学报, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [8] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究. 物理学报, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [9] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究. 物理学报, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [10] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响. 物理学报, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [11] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究. 物理学报, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [12] 钟国强, 胡立群, 朱玉宝, 林士耀, 陈珏铨, 许平, 段艳敏, 卢洪伟. HT-7上氘等离子体放电时中子注量的测量与分析. 物理学报, 2009, 58(5): 3262-3267. doi: 10.7498/aps.58.3262
    [13] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究. 物理学报, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [14] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究. 物理学报, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [15] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动. 物理学报, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [16] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运. 物理学报, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [17] 王文浩, 许宇鸿, 俞昌旋, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边缘涨落谱特征及湍流输运研究. 物理学报, 2001, 50(10): 1956-1963. doi: 10.7498/aps.50.1956
    [18] 王文浩, 俞昌旋, 许宇鸿, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边界等离子体参量及其涨落的实验研究. 物理学报, 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [19] 张先梅, 万宝年, 阮怀林, 吴振伟. HT-7托卡马克等离子体欧姆放电时电子热扩散系数的研究. 物理学报, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
    [20] 石秉仁. 托卡马克低混杂波电流驱动实验中低混杂波传播的解析分析. 物理学报, 2000, 49(12): 2394-2398. doi: 10.7498/aps.49.2394
计量
  • 文章访问数:  5218
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-04
  • 修回日期:  2017-04-02
  • 刊出日期:  2017-06-05

/

返回文章
返回