Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ideal conductive wall and magnetohydrodynamic instability in Tokamak

Shen Yong Dong Jia-Qi He Hong-Da Pan Wei Hao Guang-Zhou

Citation:

Ideal conductive wall and magnetohydrodynamic instability in Tokamak

Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou
PDF
HTML
Get Citation
  • In order to explore the conductive wall effect of plasma magnetohydrodynamic (MHD) instability and the wall designing idea, the various forms of ideal conductive walls based on divertor equilibrium configurations in the HL-2A Tokamak and their role in suppressing kink modes are studied. The MHD instabilities and the ideal MHD operational β limits under free boundary or ideal wall conditions are compared. In the stability calculation, n = 1 kink mode is considered, which has a decisive influence on the MHD instability of Tokamak plasma. The research focuses on verifying the effectiveness of various shapes of conductive walls in suppressing internal and external kink modes, and observing the operational β limit changes, and discussing and analyzing related physics. It is found that an ideal conducting wall placed at a suitable distance from the plasma can effectively suppress the external kink modes. Under the condition that the average distance between the wall and the plasma surface is the same and small enough, the circular cross-section wall is not necessarily the best option. Setting an optimized polygonal conductive wall can more effectively suppress the MHD instability. It makes the ideal MHD operational β limit of the device, βN, increase to 2.73, which is about 6.5% higher than that for the device with a wall assumed to be set at infinity ($ \sim $2.56). This implies that it is necessary to optimize and make a polygonal conductive wall as close as possible to the average distance from the plasma surface according to the poloidal-section shape of the elongated and shaped plasma, so as to achieve the suppression of external kink mode and increase the operational β limits. The physical mechanism of the stabilizing effect of the ideal wall on external kink modes is analyzed. With the development of the kink mode, when the plasma column is twisted closely to the wall, the plasma column will squeeze the magnetic field in the vacuum area, making the magnetic field line compressed and bent. At this time, the magnetic pressure and the component force of the magnetic tension in the opposite direction of the radial direction push the plasma back, thus stabilizing the kink mode. Finally, a conclusion is given.
      Corresponding author: Shen Yong, sheny@swip.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12075077) and the National Key R&D Program of China (Grant Nos. 2017YFE0301200, 2019YFE03050003).
    [1]

    Ferron J R, Casper T A, Doyle E J, et al. 2005 Phys. Plasmas 12 056126Google Scholar

    [2]

    Holcomb C T, Ferron J R, Luce T C, et al. 2009 Phys. Plasmas 16 056116Google Scholar

    [3]

    Petty C C, Kinsey J E, Holcomb C T, et al. 2016 Nucl. Fusion 56 016016Google Scholar

    [4]

    Petty C C, Nazikian R, Park J M, et al. 2017 Nucl. Fusion 57 116057Google Scholar

    [5]

    Huysmans G T A, Hender T C, Alper B, Baranov Yu F, Borba D, Conway G D, Cottrell G A, Gormezano C, Helander P, Kwon O J, Nave M F F, Sips A C C, Söldner F X, Strait E J, Zwingmann W P, JET Team 1999 Nucl. Fusion 39 1489Google Scholar

    [6]

    ITER Physics Expert Group on Disruptions, Palsma Control, and MHD and ITER Physics Basis Editors 1999 Nucl. Fusion 39 2251Google Scholar

    [7]

    Phillips M W, Todd A M M, Hughes M H, Manickam J, Johnson J L, Parker R R 1988 Nucl. Fusion 28 1499Google Scholar

    [8]

    Kerner W, Gautier P, Lackner K, Schneider W, Gruber R, Troyon F 1981 Nucl. Fusion 21 1383Google Scholar

    [9]

    Park J M, Ferron J R, Holcomb C T, Buttery R J, Solomon W M, Batchelor D B, Elwasif W, Green D L, Kim K, Meneghini O, Murakami M, Snyder P B 2018 Phys. Plasmas 25 012506Google Scholar

    [10]

    Howl W, Turnbull A D, Taylor T S, Lao L L, Helton F J, Ferron J R, Strait E J 1992 Phys. Fluids B 4 1724

    [11]

    Wesson J A, Sykes A 1985 Nucl. Fusion 25 85Google Scholar

    [12]

    Shen Y, Dong J Q, Peng X D Han M K, He H D, Li J Q 2022 Nucl. Fusion 62 106004Google Scholar

    [13]

    Yavorskij V, Goloborod'ko V, Schoepf K, Sharapov S E, Challis C D, Reznik S, Stork D 2003 Nucl. Fusion 43 1077Google Scholar

    [14]

    Taylor T S, Strait E J, Lao L, et al. 1989 Phys. Rev. Lett. 62 1278Google Scholar

    [15]

    Troyon F, Gruber R, Saurenmann H, Semenzato S, Succi S 1984 Plasma Phys. Controlled Fusion 26 209Google Scholar

    [16]

    Ferron J R, Chu M S, Helton F J, Howl W, Kellman A G, Lao L L, Lazarus E A, Lee J K, Osborne T H, Strait E J, Taylor T S, Turnbull A D 1990 Phys. Fluids B 2 1280Google Scholar

    [17]

    Taylor T S, St John H, Turnbull A D, Lin-Liu V R, Burrell K H, Chan V, Chu M S, Ferron J R, Lao L L, Haye R J La, Lazarus E A, Miller R L, Politzer P A, Schissel D P, Strait E J 1994 Plasma Phys. Control. Fusion 36 B229Google Scholar

    [18]

    Shen Y, Dong J Q, He H D, Shi Z B, Li J, Han M K, Li J Q, Sun A P, Pan L 2020 Nucl. Fusion 60 124001Google Scholar

    [19]

    沈勇, 董家齐, 何宏达, 丁玄同, 石中兵, 季小全, 李佳, 韩明昆, 吴娜, 蒋敏, 王硕, 李继全, 许敏, 段旭如 2021 物理学报 70 185201Google Scholar

    Shen Y, Dong J Q, He H D, Ding X T, Shi Z B, Ji X Q, Li J, Han M K, Wu N, Jiang M, Wang S, Li J Q, Xu M, Duan X R 2021 Acta Phys. Sin. 70 185201Google Scholar

    [20]

    Garofalo A M, Doyle E J, Ferron J R, et al. 2006 Phys. Plasmas 13 056110Google Scholar

    [21]

    Turnbull A D, Lin-Liu Y R, Miller R L, Taylor T S, Todd T N 1999 Phys. Plasmas 6 1113Google Scholar

    [22]

    Bernard L C, Moore R W 1981 Phys. Rev. Lett. 46 1286Google Scholar

    [23]

    胡希伟 2006 等离子体理论基础 (北京: 北京大学出版社) 第119—182页

    Hu X W 2006 Fundamentals of Plasma Theory (Beijing: Peking University Press) pp119–182 (in Chinese)

    [24]

    Liu Y Q, Bondeson A, Chu M S, Favez J Y, Gribov Y, Gryaznevich M, Hender T C, Howell D F, La Haye R J, Lister J B, de Vries P, EFDA JET Contributors 2005 Nucl. Fusion 45 1131Google Scholar

    [25]

    Chu M S, Ichiguchi K 2005 Nucl. Fusion 45 804Google Scholar

    [26]

    Hender T C, Gimblett C G, Robinson D C 1989 Nucl. Fusion 29 1279Google Scholar

    [27]

    Hao G Z, Liu Y Q, Wang A K, Qiu X M 2012 Phys. Plasmas 19 032507Google Scholar

    [28]

    Shen Y, Dong J Q, He H D, Turnbull A D 2009 Plasma Sci. Technol. 11 131Google Scholar

    [29]

    Lao L L, Ferron J R, Groebner R J, Howl W, John H St, Strait E J, Taylor T S 1990 Nucl. Fusion 30 1035Google Scholar

    [30]

    Lao L L, John H St, Stambaugh R D, Kellman A G, Pfeiffer W 1985 Nucl. Fusion 25 1611Google Scholar

    [31]

    Gruber R, Troyon F, Berger D, Bernard L C, Rousset S, Schreiber R, Schneider W, Roberts K V 1981 Comput. Phys. Commun. 21 323Google Scholar

  • 图 1  (a) HL-2A托卡马克极向截面图, 包括等离子体分界面(红线), 限制器(黑线), HL-2A真空室壁(深蓝线), 以及拟设新导体壁(淡蓝线); 预设4种导体壁, 概略图包含(b)原壁, (c) 圆截面壁, (d)多边形壁, 以及(e)优化多边形壁

    Figure 1.  (a) Scheme of the poloidal cross-section of HL-2A Tokamak, including plasma separatrix (red line), limiter (black line), HL-2A vacuum chamber wall (dark blue line), and proposed new conductive wall (light blue line). Four kinds of conductive walls are preset, and the sketch is as follows: (b) Original wall, (c) circular section wall, (d) polygonal wall, and (e) optimized polygonal wall.

    图 2  $ {q}_{0}=1.05 $, (a) $ {\beta }_{\rm{p}}=0.45 $时与(b)$ {\beta }_{\rm{p}}=2.00 $时的平衡位形; (c)$ {\beta }_{\rm{p}}=2 $时, GATO计算的安全因子(q)剖面(由图2(a)图2(b)对比得知, $ {\beta }_{\rm{p}} $越大, 等离子体Shafranov位移越大)

    Figure 2.  When $ {q}_{0}=1.05 $, the equilibrium configuration of (a) $ {\beta }_{\rm{p}}=0.45 $ and (b) $ {\beta }_{\rm{p}}=2.00 $, and (c) the safety factor (q) profile calculated by GATO at $ {\beta }_{\rm{p}}=2 $ (According to the comparison between Fig. 2(a) and Fig. 2(b), the larger the $ {\beta }_{\rm{p}} $, the larger the plasma Shafranov displacement).

    图 3  ${q}_{0} = 0.95$时, 较低$ {\beta }_{\rm{p}} $与较高$ {\beta }_{\rm{p}} $时模的极向投影与对应模径向扰动X的傅里叶分解结果 (a), (b) ${\beta }_{\rm{p}} = 0.45$; (c), (d) ${\beta }_{\rm{p}} = 2.5$

    Figure 3.  When $ {q}_{0}=0.95 $, the poloidal projection of the mode and the Fourier decomposition of the radial perturbation of the corresponding mode $ \mathit{X} $ at lower $ {\beta }_{\rm{p}} $ and higher $ {\beta }_{\rm{p}} $: (a), (b) $ {\beta }_{\rm{p}}=0.45 $; (c), (d) $ {\beta }_{\rm{p}}=2.5 $.

    图 4  $ {q}_{0}=1.05 $, 自由边界条件下, 模位移矢量在极向平面的投影及扰动位移径向分量X的傅里叶分解结果图 (a), (b) ${\beta }_{\rm{p}}= $$ 0.45$, q95 = 4.37, $ \lambda =-0.4492\times {10}^{-7} $; (c), (d) $ {\beta }_{\rm{p}}=2 $, q95 = 5.35, $ \lambda =-0.1247\times {10}^{-6} $; (e), (f) $ {\beta }_{\rm{p}}=2.3$, q95 = 5.67, $\lambda = $$ -0.1198\times {10}^{-3}$; (g), (h) $ {\beta }_{\rm{p}}=2.5$, q95 = 5.80, $ \lambda =-0.4774\times {10}^{-3} $

    Figure 4.  When $ {q}_{0}=1.05 $, the projection of the mode displacement vector on the poloidal plane and the radial component of Fourier decomposition of the perturbation $ \mathit{X} $: (a), (b) $ {\beta }_{\rm{p}}=0.45$, q95 = 4.37, $ \lambda =-0.4492\times {10}^{-7} $; (c), (d) $ {\beta }_{\rm{p}}=2$, q95 = 5.35, $\lambda = $$ -0.1247\times {10}^{-6}$; (e), (f) $ {\beta }_{\rm{p}}=2.3$, q95 = 5.67, $ \lambda =-0.1198\times {10}^{-3} $; (g), (h) $ {\beta }_{\rm{p}}=2.5 $, q95 = 5.80, $ \lambda =-0.4774\times {10}^{-3} $.

    图 5  (a) 优化理想导体壁条件下等离子体与壁的位置关系; (b) ${\beta }_{\rm{p}}=2.3,\; {q}_{95}=5.67$, $ \lambda =-0.1418\times {10}^{-5} $和(c) ${\beta }_{\rm{p}}=2.5, $$ {q}_{95}=5.8$, $ \lambda =-0.4985\times {10}^{-4} $时, 扰动位移在极向平面的投影; (d)${\beta }_{\rm{p}}=2.5,\;{ q}_{0}=1.05$情形下径向扰动X的傅里叶分解图

    Figure 5.  (a) Under the condition of the ideal optimized conductive wall, the position relationship between plasma and wall; (b) the projection of perturbation displacement on the polar plane when ${\beta }_{\rm{p}}=2.3,\; {q}_{95}=5.67$, $ \lambda =-0.1418\times {10}^{-5} $ and (c) ${\beta }_{\rm{p}}=2.5, $$ {q}_{95}=5.8$, $ \lambda =-0.4985\times {10}^{-4} $; (d) Fourier decomposition diagram of radial perturbation X when $ {\beta }_{\rm{p}}=2.5 $, $ {q}_{0}=1.05 $.

    图 6  自由边界与各种壁条件下等离子体的几何位置及位形, 其中(a1) 自由边界位形, (b1) 原壁位形, (c1) 圆截面壁位形, (d1) 多边形壁位形, (e1) 优化壁位形; 在各种位形下, $ {q}_{0}=0.95 $ (图(a2)—(e2))与1.05 (图(a3)—(e3)) 时模的极向截面投影和对应的模特征值$ \lambda $, 其中(a2) $ \lambda =-0.2162\times {10}^{-2} $; (a3) $ \lambda =-0.4774\times {10}^{-3} $; (b2) $ \lambda =-0.2162\times {10}^{-2} $; (b3) $\lambda =-0.4315\times {10}^{-3}$; (c2) $ \lambda =-0.1846\times {10}^{-2} $; (c3) $ \lambda =-0.1991\times {10}^{-3} $; (d2) $ \lambda =-0.1761\times {10}^{-2} $; (d3) $ \lambda =-0.7246\times {10}^{-4} $; (e2) $\lambda = -0.1727\times $$ {10}^{-2}$; (e3) $ \lambda =-0.4985\times {10}^{-4} $

    Figure 6.  Geometry and configuration of plasma under free boundary and various wall conditions: (a1) Free boundary configuration; (b1) original wall configuration; (c1) circular section wall configuration; (d1) polygonal wall configuration; (e1) optimized wall configuration. For each configuration, the poloidal projection of the mode is given respectively at $ {q}_{0}=0.95 $ (panel (a2)—(e2)) and 1.05 (panel (a3)—(e3)), and the corresponding mode eigenvalues $ \lambda $ are given under the projection diagrams: (a2)$\lambda = $$ -0.2162\times {10}^{-2}$; (a3) $ \lambda =-0.4774\times {10}^{-3} $; (b2) $ \lambda =-0.2162\times {10}^{-2} $; (b3) $ \lambda =-0.4315\times {10}^{-3} $ ; (c2) $ \lambda =-0.1846\times {10}^{-2} $; (c3) $\lambda = -0.1991\times $$ {10}^{-3}$; (d2)$\lambda = -0.1761\times {10}^{-2}$; (d3)$\lambda = -0.7246\times {10}^{-4}$; (e2) $\lambda = -0.1727\times {10}^{-2}$; (e3) $\lambda = -0.4985\times {10}^{-4}$

    图 7  模特征值绝对值$ \left|\lambda \right| $ (归一化增长率)随$ {\beta }_{\rm{p}} $的变化关系图 (a) 自由边界位形条件; (b)优化壁条件

    Figure 7.  Absolute value of mode eigenvalue ($ \left|\lambda \right| $) variation with $ {\beta }_{\rm{p}} $: (a) Free boundary configuration; (b) the condition of optimized wall.

    表 1  $ {q}_{0}=0.95 $时, 自由边界条件下以及各种形状理想壁条件下计算的模特征值

    Table 1.  Eigenvalues calculated under free boundary and ideal wall conditions when $ {q}_{0}=0.95 $.

    βP$ \lambda $/10–3
    自由边界原理想壁优化多边形壁多边形壁圆截面壁
    0.10–0.9944–0.9944–0.9944
    0.30–0.8297–0.8297–0.8297
    0.45–0.7713–0.7713–0.7713
    1.05–0.9110–0.9101–0.9001
    2.00–1.2690–1.2410–1.1840–1.190
    2.20–1.4730–1.4620–1.1301–1.352
    2.50–2.1620–2.1260–1.7270–1.761–1.846
    3.00–5.9170–5.6920–3.6110
    4.00–21.930–20.700–9.7990
    DownLoad: CSV

    表 2  $ {q}_{0}=1.05 $时, 各种条件下计算的模特征值

    Table 2.  Eigenvalues calculated under different conditions when $ {q}_{0}=1.05 $.

    βP$ \lambda $/10–7
    自由边界原理想壁优化多边形壁多边形壁圆截面壁
    0.10–0.4284–0.4284–0.4284
    0.45–0.4492–0.4492–0.4492
    1.05–0.4647–0.4647–0.4647
    1.50–1.2230–1.2230–1.2200
    2.00–1.2470–1.2460–1.2380–1.2391.240
    2.20–393.40–313.70–1.2010–2.246–1.258
    2.30–1198.0–1054.0–14.180–60.220–195.20
    2.40–2460.0–2200.0–103.00–211.90–546.0
    2.50–4774.0–4315.0–498.50–724.60–1391
    3.00–38850–35570–9185.0–10780–15430
    DownLoad: CSV
  • [1]

    Ferron J R, Casper T A, Doyle E J, et al. 2005 Phys. Plasmas 12 056126Google Scholar

    [2]

    Holcomb C T, Ferron J R, Luce T C, et al. 2009 Phys. Plasmas 16 056116Google Scholar

    [3]

    Petty C C, Kinsey J E, Holcomb C T, et al. 2016 Nucl. Fusion 56 016016Google Scholar

    [4]

    Petty C C, Nazikian R, Park J M, et al. 2017 Nucl. Fusion 57 116057Google Scholar

    [5]

    Huysmans G T A, Hender T C, Alper B, Baranov Yu F, Borba D, Conway G D, Cottrell G A, Gormezano C, Helander P, Kwon O J, Nave M F F, Sips A C C, Söldner F X, Strait E J, Zwingmann W P, JET Team 1999 Nucl. Fusion 39 1489Google Scholar

    [6]

    ITER Physics Expert Group on Disruptions, Palsma Control, and MHD and ITER Physics Basis Editors 1999 Nucl. Fusion 39 2251Google Scholar

    [7]

    Phillips M W, Todd A M M, Hughes M H, Manickam J, Johnson J L, Parker R R 1988 Nucl. Fusion 28 1499Google Scholar

    [8]

    Kerner W, Gautier P, Lackner K, Schneider W, Gruber R, Troyon F 1981 Nucl. Fusion 21 1383Google Scholar

    [9]

    Park J M, Ferron J R, Holcomb C T, Buttery R J, Solomon W M, Batchelor D B, Elwasif W, Green D L, Kim K, Meneghini O, Murakami M, Snyder P B 2018 Phys. Plasmas 25 012506Google Scholar

    [10]

    Howl W, Turnbull A D, Taylor T S, Lao L L, Helton F J, Ferron J R, Strait E J 1992 Phys. Fluids B 4 1724

    [11]

    Wesson J A, Sykes A 1985 Nucl. Fusion 25 85Google Scholar

    [12]

    Shen Y, Dong J Q, Peng X D Han M K, He H D, Li J Q 2022 Nucl. Fusion 62 106004Google Scholar

    [13]

    Yavorskij V, Goloborod'ko V, Schoepf K, Sharapov S E, Challis C D, Reznik S, Stork D 2003 Nucl. Fusion 43 1077Google Scholar

    [14]

    Taylor T S, Strait E J, Lao L, et al. 1989 Phys. Rev. Lett. 62 1278Google Scholar

    [15]

    Troyon F, Gruber R, Saurenmann H, Semenzato S, Succi S 1984 Plasma Phys. Controlled Fusion 26 209Google Scholar

    [16]

    Ferron J R, Chu M S, Helton F J, Howl W, Kellman A G, Lao L L, Lazarus E A, Lee J K, Osborne T H, Strait E J, Taylor T S, Turnbull A D 1990 Phys. Fluids B 2 1280Google Scholar

    [17]

    Taylor T S, St John H, Turnbull A D, Lin-Liu V R, Burrell K H, Chan V, Chu M S, Ferron J R, Lao L L, Haye R J La, Lazarus E A, Miller R L, Politzer P A, Schissel D P, Strait E J 1994 Plasma Phys. Control. Fusion 36 B229Google Scholar

    [18]

    Shen Y, Dong J Q, He H D, Shi Z B, Li J, Han M K, Li J Q, Sun A P, Pan L 2020 Nucl. Fusion 60 124001Google Scholar

    [19]

    沈勇, 董家齐, 何宏达, 丁玄同, 石中兵, 季小全, 李佳, 韩明昆, 吴娜, 蒋敏, 王硕, 李继全, 许敏, 段旭如 2021 物理学报 70 185201Google Scholar

    Shen Y, Dong J Q, He H D, Ding X T, Shi Z B, Ji X Q, Li J, Han M K, Wu N, Jiang M, Wang S, Li J Q, Xu M, Duan X R 2021 Acta Phys. Sin. 70 185201Google Scholar

    [20]

    Garofalo A M, Doyle E J, Ferron J R, et al. 2006 Phys. Plasmas 13 056110Google Scholar

    [21]

    Turnbull A D, Lin-Liu Y R, Miller R L, Taylor T S, Todd T N 1999 Phys. Plasmas 6 1113Google Scholar

    [22]

    Bernard L C, Moore R W 1981 Phys. Rev. Lett. 46 1286Google Scholar

    [23]

    胡希伟 2006 等离子体理论基础 (北京: 北京大学出版社) 第119—182页

    Hu X W 2006 Fundamentals of Plasma Theory (Beijing: Peking University Press) pp119–182 (in Chinese)

    [24]

    Liu Y Q, Bondeson A, Chu M S, Favez J Y, Gribov Y, Gryaznevich M, Hender T C, Howell D F, La Haye R J, Lister J B, de Vries P, EFDA JET Contributors 2005 Nucl. Fusion 45 1131Google Scholar

    [25]

    Chu M S, Ichiguchi K 2005 Nucl. Fusion 45 804Google Scholar

    [26]

    Hender T C, Gimblett C G, Robinson D C 1989 Nucl. Fusion 29 1279Google Scholar

    [27]

    Hao G Z, Liu Y Q, Wang A K, Qiu X M 2012 Phys. Plasmas 19 032507Google Scholar

    [28]

    Shen Y, Dong J Q, He H D, Turnbull A D 2009 Plasma Sci. Technol. 11 131Google Scholar

    [29]

    Lao L L, Ferron J R, Groebner R J, Howl W, John H St, Strait E J, Taylor T S 1990 Nucl. Fusion 30 1035Google Scholar

    [30]

    Lao L L, John H St, Stambaugh R D, Kellman A G, Pfeiffer W 1985 Nucl. Fusion 25 1611Google Scholar

    [31]

    Gruber R, Troyon F, Berger D, Bernard L C, Rousset S, Schreiber R, Schneider W, Roberts K V 1981 Comput. Phys. Commun. 21 323Google Scholar

  • [1] Zhang Qi-Fan, Le Wen-Cheng, Zhang Yu-Hao, Ge Zhong-Xin, Kuang Zhi-Qiang, Xiao Sheng-Yang, Wang Lu. Effects of radiation from tungsten impurities on the thermal energy loss during the fast thermal quench stage of major disruption in tokamak plasmas. Acta Physica Sinica, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [2] Liu Guan-Nan, LI Xin-Xia, Liu Hong-Bo, Sun Ai-Ping. Synergistic current drive of helicon wave and lower hybrid wave in HL-2M. Acta Physica Sinica, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [3] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [4] Zhu Xiao-Long, Chen Wei, Wang Feng, Wang Zheng-Xiong. Hybrid numerical simulation on fast particle transport induced by synergistic interaction of low- and medium-frequency magnetohydrodynamic instabilities in tokamak plasma. Acta Physica Sinica, 2023, 72(21): 215210. doi: 10.7498/aps.72.20230620
    [5] Liu Tai-Qi, Chen Shao-Yong, Mou Mao-Lin, Tang Chang-Jian. Theoretical study of effect of hyper-resistivity on linear stability of ballooning mode. Acta Physica Sinica, 2023, 72(14): 145201. doi: 10.7498/aps.72.20230308
    [6] Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu. Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak. Acta Physica Sinica, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [7] Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Ding Fang, Wang De-Zhen. Numerical study of the erosion of the EAST tungsten divertor targets caused by edge localized modes. Acta Physica Sinica, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [8] Zhang Yang-Zhong, Xie Tao. Parametric excitation of axisymmetric toroidal electrostatic mode by drift wave turbulences. Acta Physica Sinica, 2014, 63(3): 035202. doi: 10.7498/aps.63.035202
    [9] Zhang Chong-Yang, Liu A-Di, Li Hong, Chen Zhi-Peng, Li Bin, Yang Zhou-Jun, Zhou Chu, Xie Jin-Lin, Lan Tao, Liu Wan-Dong, Zhuang Ge, Yu Chang-Xuan. Application of dual-polarization frequency-modulated microwave reflectometer to J-TEXT tokamak. Acta Physica Sinica, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [10] Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen. Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0. Acta Physica Sinica, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [11] Lu Hong-Wei, Zha Xue-Jun, Hu Li-Qun, Lin Shi-Yao, Zhou Rui-Jie, Luo Jia-Rong, Zhong Fang-Chuan. The effect of gas puffing on plasma during slide-away discharge in the HT-7 tokamak. Acta Physica Sinica, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [12] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [13] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [14] Xu Qiang, Gao Xiang, Shan Jia-Fang, Hu Li-Qun, Zhao Jun-Yu. Experimental study of large power lower hybrid current drive on HT-7 tokamak. Acta Physica Sinica, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [15] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [16] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [17] WANG WEN-HAO, YU CHANG-XUAN, XU YU-HONG, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. MEASUREMENT OF EDGE PLASMA PARAMETERS AND THEIR ELECTROSTATIC FLUCTUATIONS ON THE HT-7 SUPERCONDUCTING TOKAMAK. Acta Physica Sinica, 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [18] ZHANG XIAN-MEI, WAN BAO-NIAN, RUAN HUAI-LIN, WU ZHEN-WEI. STUDY OF THE ELECTRON THERMAL CONDUCTIVITY OF THE OHMICALLY HEATED DISCHARGES IN THE HT-7 TOKAMAK. Acta Physica Sinica, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
    [19] WANG WEN-HAO, XU YU-HONG, YU CHANG-XUAN, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. ELECTROSTATIC FLUCTUATIONS AND TURBULENT TRANSPORT STUDIES IN THE HT-7 SUPERCONDUCTING TOKAMAK EDGE PLASMAS . Acta Physica Sinica, 2001, 50(10): 1956-1963. doi: 10.7498/aps.50.1956
    [20] SHI BING-REN. ANALYTIC STUDY OF LOWER HYBRID WAVE PROPAGATION IN TOKAMAK LHCD EXPERIMENTS. Acta Physica Sinica, 2000, 49(12): 2394-2398. doi: 10.7498/aps.49.2394
Metrics
  • Abstract views:  4213
  • PDF Downloads:  124
  • Cited By: 0
Publishing process
  • Received Date:  25 October 2022
  • Accepted Date:  18 November 2022
  • Available Online:  28 November 2022
  • Published Online:  05 February 2023

/

返回文章
返回