Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of effect of hyper-resistivity on linear stability of ballooning mode

Liu Tai-Qi Chen Shao-Yong Mou Mao-Lin Tang Chang-Jian

Citation:

Theoretical study of effect of hyper-resistivity on linear stability of ballooning mode

Liu Tai-Qi, Chen Shao-Yong, Mou Mao-Lin, Tang Chang-Jian
PDF
HTML
Get Citation
  • The coupling of ballooning mode and peeling mode forms the so-called peeling-ballooning mode, which is widely used in the physical explanation of the edge localized mode (ELM). The nonlinear platform simulation based on the non-ideal peeling-ballooning mode model successfully explained the ELM experimental results. Therefore, exploring the influences of various non-ideal effects on the ballooning mode in the edge transport barrier is very important in controlling the ELM in the future fusion reactors. Among the reports on non-ideal effects, there are few reports involving the effect of hyper-resistivity caused by anomalous electron viscosity on ballooning mode. It has been found that the hyper-resistivity has a destabilizing effect on the ballooning mode, but the associated physical mechanism is still unclear. Therefore, it is necessary to systematically explore the influence of hyper-resistivity on the ballooning mode theoretically by introducing hyper-resistivity into the ballooning mode model. The linear growth rate of ideal and non-ideal ballooning mode are solved by the shooting method for the derived eigenvalue equation of non-ideal ballooning mode containing hyper-resistivity, finite resistivity and diamagnetic drift effects, and the dependence of ballooning mode on hyper-resistivity is also explored under different conditions. The results show that the hyper-resistivity may destabilize the ballooning mode, and the physical mechanism is that the current diffusion effect caused by the hyper-resistivity weakens the stabilizing effect of the magnetic field line bending on the ballooning mode. When both the resistivity and hyper-resistivity are considered, they are in a competitive relationship. When the ratio of hyper-resistivity to resistivity is relatively high, hyper-resistivity plays a dominant role, and the destabilizing effect of resistivity will be shielded by hyper-resistivity, and vice versa. The destabilization effect of hyper-resistivity on ballooning modes is enhanced with the increase of the toroidal mode number. The hyper-resistivity will destabilize the original stable modes once the toroidal mode number exceeds a certain threshold. Further studies show that the threshold is inversely proportional to the ratio of hyper-resistivity to resistivity. The research results have important reference value for the control of edge localized modes in low-collisionality edge plasma in future fusion reactors.
      Corresponding author: Chen Shao-Yong, sychen@scu.edu.cn
    • Funds: Project supported by the National Magnetic Confinement Fusion Energy R&D Program of China (Grant Nos. 2019YFE03090400, 2019YFE03030004) and the National Natural Science Foundation of China (Grant Nos. 11775154, 11905152).
    [1]

    La Haye R J 2006 Phys. Plasmas 13 055501Google Scholar

    [2]

    Connor J W, Hastie R J, Taylor J B 1978 Phys. Rev. Lett. 40 396Google Scholar

    [3]

    Glenn Bateman, Nelson D B 1978 Phys. Rev. Lett. 41 1804Google Scholar

    [4]

    Strauss H R 1981 Phys. Fluids 24 2004Google Scholar

    [5]

    Dark J F, Antonsen Jr T M 1985 Phys. Fluids 28 544Google Scholar

    [6]

    Lortz D, Nuhrenberg J 1978 Phys. Lett. A 68 49Google Scholar

    [7]

    Coppi B, Ferreira A, Ramos J 1980 Phys. Rev. Lett. 44 990Google Scholar

    [8]

    Strauss H R, Park W, Monticello D A, White R B 1980 Nucl. Fusion 20 638

    [9]

    Snyder P B, Wilson H R, Ferron J R, Lao L L, Leonard A W, Osborne T H, Turnbull A D, Mossessian D, Murakami M, Xu X Q 2002 Phys. Plasmas 9 2037Google Scholar

    [10]

    Strauss H R 1986 Phys. Fluids 29 3668Google Scholar

    [11]

    Kaw P K, Valeo E J, Rutherford P H 1979 Phys. Rev. Lett. 43 1398Google Scholar

    [12]

    Wu N, Chen S Y, Mou M L, Tang C J 2018 Phys. Plasmas 25 092305Google Scholar

    [13]

    Connor J W, Hastie R J, Wilson H R 1998 Phys. Plasmas 5 2687Google Scholar

    [14]

    Xu X Q, Dudson B, Snyder P B, Umansky M V, Wilson H 2010 Phys. Rev. Lett. 105 175005Google Scholar

    [15]

    Rhee T, Park G Y, Jhang H, Kim S S, Singh R 2017 Phys. Plasmas 24 072504Google Scholar

    [16]

    Rhee T, Kim S S, Jhang H, Park G Y, Singh R 2015 Nucl. Fusion 55 032004Google Scholar

    [17]

    Jhang H, Kaang H H, Kim S S, Rhee T, Singh R, Hahm T S 2017 Nucl. Fusion 57 022006Google Scholar

    [18]

    Miller R L, Chu M S, Greene J M, Lin-Liu Y R, Waltz R E 1998 Phys. Plasmas 5 973Google Scholar

    [19]

    Mou M L, Jhang H, Rhee T, Chen S Y, Tang C J 2018 Phys. Plasmas 25 082518Google Scholar

    [20]

    Xia T Y, Xu X Q, Dudson B D, Li J 2012 Contrib. Plasma Phys. 52 353Google Scholar

    [21]

    Tang W M, Dewar R L, Manickam J 1982 Nucl. Fusion 22 1079Google Scholar

  • 图 1  考虑超电阻的非理想气球模本征方程函数解($R= $$ 3.52\;{\rm{m}}$, $r=1.24\;{\rm{m}}$, $ q=2.35 $, $s=2.59 $, $ \alpha =0.46 $, $n= $$ 35$, $\eta ={10}^{-7}$, $ {\eta }_{{\rm{H}}}={9\times 10}^{-15} $)

    Figure 1.  Eigen-functions of the ballooning model with hyper-resistivity ($R=3.52\;{\rm{m}}$, $r=1.24\;{\rm{m}}$, $ q=2.35 $, $s=2.59 $, $ \alpha =0.46 $, $ n=35 $, $\eta ={10}^{-7}$, $ {\eta }_{{\rm{H}}}={9\times 10}^{-15} $).

    图 2  超电阻对理想气球模线性增长率的影响, 其中横坐标$ n $表示环向模数, 纵坐标为归一化气球模线性增长率

    Figure 2.  Effect of hyper-resistivity on the linear growth rate of ideal ballooning modes, where the x-coordinate represents the toroidal mode number, and the y-coordinate is the linear growth rate of ballooning modes.

    图 3  不同电阻和超电阻条件下气球模线性增长率随环向模数的变化, 其中超电阻和电阻的比值$ {\alpha }_{{\rm{H}}}={10}^{-7} $保持不变

    Figure 3.  Linear growth rate of ballooning modes varies with toroidal mode number under different resistivity and hyper-resistivity, the ratio of hyper-resistivity to resistivity remain unchanged, where $ {\alpha }_{{\rm{H}}}={10}^{-7} $.

    图 4  保持超电阻大小不变($ {\eta }_{{\rm{H}}}={10}^{-16} $), 不同电阻条件下气球模线性增长率随环向模数的变化

    Figure 4.  The linear growth rate of the ballooning mode varies with the toroidal mode number under different resistivity conditions, keeping the values of the hyper-resistivity unchanged, where $ {\eta }_{{\rm{H}}}={10}^{-16} $.

    图 5  不同$ {\alpha }_{{\rm{H}}} $条件下, 气球模线性增长率随环向模数的变化情况, 其中电阻$ \eta ={10}^{-8} $保持不变

    Figure 5.  The linear growth rate of the ballooning mode varies with the toroidal mode number under different ratio of the hyper-resistivity to the resistivity, where the value of resistivity is a constant.

    图 6  不同电阻条件下, 超电阻对气球模线性增长率起作用的环向模数阈值与超电阻和电阻比值之间的关系, 横坐标为超电阻与电阻的比值$ {\alpha }_{{\rm{H}}} $, 纵坐标为环向模数阈值$ {n}_{{\rm{t}}{\rm{h}}} $

    Figure 6.  The threshold value of toroidal mode number varies with the ratio of hyper-resistivity to resistivity when the hyper-resistivity plays a role in the linear growth rate of the ballooning mode by changing the resistivity values. The x-coordinate is the ratio of the hyper-resistivity to the resistivity, and the y-coordinate is the threshold value of toroidal mode number.

    图 7  考虑抗磁效应条件下, 超电阻对气球模线性增长率的影响

    Figure 7.  Effect of hyper-resistivity on the linear growth rate of ideal ballooning modes with diamagnetic effect.

    图 8  同时考虑抗磁效应、电阻和超电阻条件下, 气球模线性增长率随环向模数的变化, 其中$ {\alpha }_{{\rm{H}}}={10}^{-7} $保持不变

    Figure 8.  With diamagnetic effect, the linear growth rate of ballooning modes varies with toroidal mode number under different resistivity and hyper-resistivity, keeping the ratio of hyper-resistivity to resistivity unchanged, where ${\alpha }_{{\rm{H}}}= $$ {10}^{-7}$.

    图 9  同时考虑抗磁、电阻和超电阻效应条件下, 气球模线性增长率随环向模数的变化, 其中超电阻大小(${\eta }_{{\rm{H}}}= $$ {10}^{-16}$)保持不变

    Figure 9.  With diamagnetic effect, the linear growth rate of the ballooning mode varies with the toroidal mode number under different resistivity conditions, keeping the values of hyper-resistivity unchanged, where $ {\eta }_{{\rm{H}}}={10}^{-16} $.

    图 10  考虑抗磁效应时, 环向模数阈值随超电阻与电阻比值的变化

    Figure 10.  With diamagnetic effect, the threshold value of toroidal mode number varies with the ratio of hyper-resistivity to resistivity.

    图 11  气球模线性增长率随磁剪切的变化关系(取参数$\alpha =0.46,\; n=50, \;\eta ={10}^{-8},\; {\eta }_{{\rm{H}}}={1\times 10}^{-15}$)

    Figure 11.  Linear growth rate of ballooning modes varies with the growth of magnetic shear, with $\alpha =0.46,\; n=50, $$ \; \eta ={10}^{-8}, \;{\eta }_{{\rm{H}}}={1\times 10}^{-15}$.

    图 12  不同磁剪切条件下, 环向模数阈值随超电阻与电阻比值的变化关系

    Figure 12.  With different magnetic shear, the threshold value of toroidal mode number varies with the ratio of hyper-resistivity to resistivity.

  • [1]

    La Haye R J 2006 Phys. Plasmas 13 055501Google Scholar

    [2]

    Connor J W, Hastie R J, Taylor J B 1978 Phys. Rev. Lett. 40 396Google Scholar

    [3]

    Glenn Bateman, Nelson D B 1978 Phys. Rev. Lett. 41 1804Google Scholar

    [4]

    Strauss H R 1981 Phys. Fluids 24 2004Google Scholar

    [5]

    Dark J F, Antonsen Jr T M 1985 Phys. Fluids 28 544Google Scholar

    [6]

    Lortz D, Nuhrenberg J 1978 Phys. Lett. A 68 49Google Scholar

    [7]

    Coppi B, Ferreira A, Ramos J 1980 Phys. Rev. Lett. 44 990Google Scholar

    [8]

    Strauss H R, Park W, Monticello D A, White R B 1980 Nucl. Fusion 20 638

    [9]

    Snyder P B, Wilson H R, Ferron J R, Lao L L, Leonard A W, Osborne T H, Turnbull A D, Mossessian D, Murakami M, Xu X Q 2002 Phys. Plasmas 9 2037Google Scholar

    [10]

    Strauss H R 1986 Phys. Fluids 29 3668Google Scholar

    [11]

    Kaw P K, Valeo E J, Rutherford P H 1979 Phys. Rev. Lett. 43 1398Google Scholar

    [12]

    Wu N, Chen S Y, Mou M L, Tang C J 2018 Phys. Plasmas 25 092305Google Scholar

    [13]

    Connor J W, Hastie R J, Wilson H R 1998 Phys. Plasmas 5 2687Google Scholar

    [14]

    Xu X Q, Dudson B, Snyder P B, Umansky M V, Wilson H 2010 Phys. Rev. Lett. 105 175005Google Scholar

    [15]

    Rhee T, Park G Y, Jhang H, Kim S S, Singh R 2017 Phys. Plasmas 24 072504Google Scholar

    [16]

    Rhee T, Kim S S, Jhang H, Park G Y, Singh R 2015 Nucl. Fusion 55 032004Google Scholar

    [17]

    Jhang H, Kaang H H, Kim S S, Rhee T, Singh R, Hahm T S 2017 Nucl. Fusion 57 022006Google Scholar

    [18]

    Miller R L, Chu M S, Greene J M, Lin-Liu Y R, Waltz R E 1998 Phys. Plasmas 5 973Google Scholar

    [19]

    Mou M L, Jhang H, Rhee T, Chen S Y, Tang C J 2018 Phys. Plasmas 25 082518Google Scholar

    [20]

    Xia T Y, Xu X Q, Dudson B D, Li J 2012 Contrib. Plasma Phys. 52 353Google Scholar

    [21]

    Tang W M, Dewar R L, Manickam J 1982 Nucl. Fusion 22 1079Google Scholar

  • [1] Zhang Qi-Fan, Le Wen-Cheng, Zhang Yu-Hao, Ge Zhong-Xin, Kuang Zhi-Qiang, Xiao Sheng-Yang, Wang Lu. Effects of radiation from tungsten impurities on the thermal energy loss during the fast thermal quench stage of major disruption in tokamak plasmas. Acta Physica Sinica, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [2] Liu Guan-Nan, LI Xin-Xia, Liu Hong-Bo, Sun Ai-Ping. Synergistic current drive of helicon wave and lower hybrid wave in HL-2M. Acta Physica Sinica, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [3] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [4] Zhu Xiao-Long, Chen Wei, Wang Feng, Wang Zheng-Xiong. Hybrid numerical simulation on fast particle transport induced by synergistic interaction of low- and medium-frequency magnetohydrodynamic instabilities in tokamak plasma. Acta Physica Sinica, 2023, 72(21): 215210. doi: 10.7498/aps.72.20230620
    [5] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [6] Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu. Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak. Acta Physica Sinica, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [7] Zhang Yang-Zhong, Xie Tao. Parametric excitation of axisymmetric toroidal electrostatic mode by drift wave turbulences. Acta Physica Sinica, 2014, 63(3): 035202. doi: 10.7498/aps.63.035202
    [8] Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Ding Fang, Wang De-Zhen. Numerical study of the erosion of the EAST tungsten divertor targets caused by edge localized modes. Acta Physica Sinica, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [9] Zhang Chong-Yang, Liu A-Di, Li Hong, Chen Zhi-Peng, Li Bin, Yang Zhou-Jun, Zhou Chu, Xie Jin-Lin, Lan Tao, Liu Wan-Dong, Zhuang Ge, Yu Chang-Xuan. Application of dual-polarization frequency-modulated microwave reflectometer to J-TEXT tokamak. Acta Physica Sinica, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [10] Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen. Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0. Acta Physica Sinica, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [11] Lu Hong-Wei, Zha Xue-Jun, Hu Li-Qun, Lin Shi-Yao, Zhou Rui-Jie, Luo Jia-Rong, Zhong Fang-Chuan. The effect of gas puffing on plasma during slide-away discharge in the HT-7 tokamak. Acta Physica Sinica, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [12] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [13] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [14] Xu Qiang, Gao Xiang, Shan Jia-Fang, Hu Li-Qun, Zhao Jun-Yu. Experimental study of large power lower hybrid current drive on HT-7 tokamak. Acta Physica Sinica, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [15] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [16] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [17] ZHANG XIAN-MEI, WAN BAO-NIAN, RUAN HUAI-LIN, WU ZHEN-WEI. STUDY OF THE ELECTRON THERMAL CONDUCTIVITY OF THE OHMICALLY HEATED DISCHARGES IN THE HT-7 TOKAMAK. Acta Physica Sinica, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
    [18] WANG WEN-HAO, YU CHANG-XUAN, XU YU-HONG, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. MEASUREMENT OF EDGE PLASMA PARAMETERS AND THEIR ELECTROSTATIC FLUCTUATIONS ON THE HT-7 SUPERCONDUCTING TOKAMAK. Acta Physica Sinica, 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [19] WANG WEN-HAO, XU YU-HONG, YU CHANG-XUAN, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. ELECTROSTATIC FLUCTUATIONS AND TURBULENT TRANSPORT STUDIES IN THE HT-7 SUPERCONDUCTING TOKAMAK EDGE PLASMAS . Acta Physica Sinica, 2001, 50(10): 1956-1963. doi: 10.7498/aps.50.1956
    [20] SHI BING-REN. ANALYTIC STUDY OF LOWER HYBRID WAVE PROPAGATION IN TOKAMAK LHCD EXPERIMENTS. Acta Physica Sinica, 2000, 49(12): 2394-2398. doi: 10.7498/aps.49.2394
Metrics
  • Abstract views:  2715
  • PDF Downloads:  59
  • Cited By: 0
Publishing process
  • Received Date:  02 March 2023
  • Accepted Date:  18 May 2023
  • Available Online:  25 May 2023
  • Published Online:  20 July 2023

/

返回文章
返回