-
Plasma rotation and its shear are key parameters influencing fusion devices. The prediction and control of plasma rotation velocity are of great significance for the stable operation and confinement improvement of future fusion reactors. External momentum injection methods are insuffcient to suppress resistive wall mode instability while achieving Q greater than 5 in International Thermonuclear Experimental Reactor (ITER). Therefore, it is necessary to conduct experimental research on intrinsic plasma rotation that does not rely on external momentum injection.To better predict the magnitude of intrinsic rotation velocity in future fusion devices, this experiment conducted a study on the scaling of residual stress and dimensionless parameters on EAST. Using the balanced neutral beam, multiple measurements of intrinsic torque were performed, providing experimental basis for the prediction of intrinsic rotation in future tokamak devices. The scaling results indicate that the core residual stress has a dependency on $\rho_*^{-1.80 \pm 1.26}$, while the scaling of edge residual stress shown a opposite trend with $\rho_*^{1.26} \pm 0.63$.This suggests that as the device size increases, the core residual stress in future large devices may increase, while the edge residual stress may decrease. The difference in scaling results between the core and edge residual stress indicates that in the edge region, there are symmetry-breaking mechanisms other than E × B flow shear dominating the generation of residual stress in the scrape-off layer (SOL).A relationship was found between intrinsic torque and $\nu_*$, revealing that core intrinsic torque depends on $\nu_*^{-0.21 \pm 0.18}$.Combining the scaling results of core intrinsic torque with gyroradius and normalized collisionality, the scaling law for core intrinsic torque is obtained as $\rho_*^{-1.39 \pm 0.71} \nu_*^{0.11 \pm 0.10}$.Using plasma parameters of ITER operation scenario 1, the core intrinsic torque in future ITER plasma is predicted to be 1.0 ±6.3 N · m, which is much smaller than predicted magnitude at DIII-D.
-
Keywords:
- tokamak /
- momentum transport /
- intrinsic rotation /
- scaling law
-
[1] Peeters A, Angioni C, Bortolon A, Camenen Y, Casson F, Duval B, Fiederspiel L, Hornsby W, Idomura Y, Hein T, Kluy N, Mantica P, Parra F, Snodin A, Szepesi G, Strintzi D, Tala T, Tardini G, De Vries P, Weiland J 2011 Nucl. Fusion 51094027
[2] Diamond P, Kosuga Y, Gürcan ff, McDevitt C, Hahm T, Fedorczak N, Rice J, Wang W, Ku S, Kwon J, Dif-Pradalier G, Abiteboul J, Wang L, Ko W, Shi Y, Ida K, Solomon W, Jhang H, Kim S, Yi S, Ko S, Sarazin Y, Singh R, Chang C 2013 Nucl. Fusion 53104019
[3] Ida K, Rice J 2014 Nucl. Fusion 54045001
[4] Rice J E 2016 Plasma Phys. Control. Fusion 58083001
[5] Stoltzfus-Dueck T 2019 Plasma Phys. Control. Fusion 61124003
[6] Garofalo A M, Strait E J, Johnson L C, La Haye R J, Lazarus E A, Navratil G A, Okabayashi M, Scoville J T, Taylor T S, Turnbull A D 2002 Phys. Rev. Lett. 89235001
[7] Chapman I T, Liu Y Q, Asunta O, Graves J P, Johnson T, Jucker M 2012 Phys. Plasmas 19052502
[8] Ida K, Miura Y, Matsuda T, Itoh K, Hidekuma S, Itoh S I, Jft-2M Group 1995 Phys. Rev. Lett. 741990
[9] Rice J, Ince-Cushman A, deGrassie J, Eriksson L G, Sakamoto Y, Scarabosio A, Bortolon A, Burrell K, Duval B, Fenzi-Bonizec C, Greenwald M, Groebner R, Hoang G, Koide Y, Marmar E, Pochelon A, Podpaly Y 2007 Nucl. Fusion 471618
[10] Yoshida M, Kamada Y, Takenaga H, Sakamoto Y, Urano H, Oyama N, Matsunaga G 2008 Phys. Rev. Lett. 100105002
[11] Solomon W M, Burrell K H, deGrassie J S, Budny R, Groebner R J, Kinsey J E, Kramer G J, Luce T C, Makowski M A, Mikkelsen D, Nazikian R, Petty C C, Politzer P A, Scott S D, Van Zeeland M A, Zarnstorff M C 2007 Plasma Phys. Control. Fusion 49 B313
[12] Solomon W M, Burrell K H, Garofalo A M, Kaye S M, Bell R E, Cole A J, deGrassie J S, Diamond P H, Hahm T S, Jackson G L, Lanctot M J, Petty C C, Reimerdes H, Sabbagh S A, Strait E J, Tala T, Waltz R E 2010 Phys. Plasmas 17056108
[13] Chrystal C, Grierson B A, Solomon W M, Tala T, deGrassie J S, Petty C C, Salmi A, Burrell K H 2017 Phys. Plasmas 24042501
[14] Rice J, Cao N, Tala T, Chrystal C, Greenwald M, Hughes J, Marmar E, Reinke M, Rodriguez Fernandez P, Salmi A 2021 Nucl. Fusion 61026013
[15] Zimmermann C, McDermott R, Angioni C, Duval B, Dux R, Fable E, Salmi A, Stroth U, Tala T, Tardini G, Pütterich T, the ASDEX Upgrade Team 2023 Nucl. Fusion 63126006
[16] Rice J, Duval B, Reinke M, Podpaly Y, Bortolon A, Churchill R, Cziegler I, Diamond P, Dominguez A, Ennever P, Fiore C, Granetz R, Greenwald M, Hubbard A, Hughes J, Irby J, Ma Y, Marmar E, McDermott R, Porkolab M, Tsujii N, Wolfe S 2011 Nucl. Fusion 51083005
[17] Wang X, Lyu B, Lu X, Li Y, Solomon W M, Hao B, Chen J, Wang F, Fu J, Zhang H, Yang J, Bin B, He L, Li Y, Wan S, Gong X, Wan B, Ye M 2020 Plasma Sci. Technol. 22065104
[18] Bae C, Jin Y, Lyu B, Hao B, Li Y, Zhang X, Liu H, Zhang H, Wang F, Fu J, Fu J, Huang J, Zeng L, Zang Q, Li Y, He L, Lu D 2024 Plasma Phys. Control. Fusion 66045020
[19] Yang S, Na Y S, Na D, Park J K, Shi Y, Ko W, Lee S, Hahm T 2018 Nucl. Fusion 58066008
[20] Zimmermann C F B, McDermott R M, Fable E, Angioni C, Duval B P, Dux R, Salmi A, Stroth U, Tala T, Tardini G, Pütterich T 2022 Plasma Phys. Control. Fusion 64055020
[21] Ohtani Y, Yoshida M, Honda M, Narita E 2021 AIP Adv. 11085306
[22] Wan B, Gong X, Liang Y, Xiang N, Xu G, Sun Y, Wang L, Qian J, Liu H, Zhang B, Xia T, Huang J, Ding R, Zhang T, Zuo G, Sun Z, Zeng L, Zhang X, Zang Q, Lyu B, Garofalo A, Li G, Li K, Yang Q, For The East Team And Collaborators 2022 Nucl. Fusion 62042010
[23] Liu H, Jie Y, Ding W, Brower D, Zou Z, Qian J, Li W, Yang Y, Zeng L, Zhang S, Lan T, Wang S, Hanada K, Wei X, Hu L, Wan B 2016 JINST 11 C01049
[24] Zang Q, Zhao J, Yang L, Hu Q, Xi X, Dai X, Yang J, Han X, Li M, Hsieh C L 2011 Rev. Sci. Instrum. 82063502
[25] Zhao H, Zhou T, Liu Y, Ti A, Ling B, Austin M E, Houshmandyar S, Huang H, Rowan W L, Hu L 2018 Rev. Sci. Instrum. 8910H111
[26] Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, von Hellermann M, Shi Y J, Ye M Y, Wan B N 2014 Rev. Sci. Instrum. 8511E428
[27] Yin X H, Li Y Y, Fu J, Jiang D, Feng S Y, Gu Y Q, Cheng Y, Lyu B, Shi Y J, Ye M Y, Wan B N 2016 Rev. Sci. Instrum. 8711E539
[28] Yin X, Li Y, Fu J, Jiang D, Lyu B, Shi Y, Ye M, Wan B 2019 Fusion Eng. Des. 148111282
[29] Yoshida M, Koide Y, Takenaga H, Urano H, Oyama N, Kamiya K, Sakamoto Y, Kamada Y, Team T J 2006 Plasma Phys. Control. Fusion 481673
[30] Tala T, Crombé K, De Vries P C, Ferreira J, Mantica P, Peeters A G, Andrew Y, Budny R, Corrigan G, Eriksson A, Garbet X, Giroud C, Hua M D, Nordman H, Naulin V, Nave M F F, Parail V, Rantamäki K, Scott B D, Strand P, Tardini G, Thyagaraja A, Weiland J, Zastrow K D, JET-EFDA Contributors 2007 Plasma Phys. Control. Fusion 49 B291
[31] Ryter F, Dux R, Mantica P, Tala T 2010 Plasma Phys. Control. Fusion 52124043. Number:12
[32] Yang J, Chen J, Wang F D, Li Y Y, Lyu B, Xiang D, Yin X H, Zhang H M, Fu J, Liu H Q, Zang Q, Chu Y Q, Liu J W, Wang X Y, Bin B, He L, Wan S K, Gong X Y, Ye M Y 2020 Acta Phys. Sin. 69055201
[33] Bae C, Stacey W, Solomon W 2013 Nucl. Fusion 53043011
[34] Bae C, Jin Y, Lyu B, Fu J, Wang F, Zhang H 2024 Comput. Phys. Commun. 296108992
[35] GOLDSTON R J 1981 J. Comput. Phys. 4361
[36] Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159157
[37] Solomon W, Burrell K, deGrassie J, Boedo J, Garofalo A, Moyer R, Muller S, Petty C, Reimerdes H 2011 Nucl. Fusion 51073010
[38] Rice J E, Ince-Cushman A C, Reinke M L, Podpaly Y, Greenwald M J, LaBombard B, Marmar E S 2008 Plasma Phys. Control. Fusion 50124042
[39] Kosuga Y, Diamond P H, Gürcan ff D 2010 Phys. Plasmas 17102313
[40] Green B J, Team I I, Teams P 2003 Plasma Phys. Control. Fusion 45687
[41] III R W B, Stoltzfus-Dueck T 2024 Plasma Phys. Control. Fusion 66065011
[42] Parra F I, Barnes M 2015 Plasma Phys. Control. Fusionn 57045002
Metrics
- Abstract views: 55
- PDF Downloads: 0
- Cited By: 0