Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental analysis of plasma intrinsic torque based on NBI in EAST L-mode plasmas

YUAN Hong YIN Xianghui LV Bo JIN Yifei Cheonho BAE ZHANG Hongming FU Jia LIU Haiqing ZHAO Hailin ZANG Qing WANG Fudi XIANG Dong

Citation:

Experimental analysis of plasma intrinsic torque based on NBI in EAST L-mode plasmas

YUAN Hong, YIN Xianghui, LV Bo, JIN Yifei, Cheonho BAE, ZHANG Hongming, FU Jia, LIU Haiqing, ZHAO Hailin, ZANG Qing, WANG Fudi, XIANG Dong
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Plasma rotation and its shear are key parameters influencing fusion devices. The prediction and control of plasma rotation velocity are of great significance for the stable operation and confinement improvement of future fusion reactors. External momentum injection methods are insuffcient to suppress resistive wall mode instability while achieving Q greater than 5 in International Thermonuclear Experimental Reactor (ITER). Therefore, it is necessary to conduct experimental research on intrinsic plasma rotation that does not rely on external momentum injection.To better predict the magnitude of intrinsic rotation velocity in future fusion devices, this experiment conducted a study on the scaling of residual stress and dimensionless parameters on EAST. Using the balanced neutral beam, multiple measurements of intrinsic torque were performed, providing experimental basis for the prediction of intrinsic rotation in future tokamak devices. The scaling results indicate that the core residual stress has a dependency on $\rho_*^{-1.80 \pm 1.26}$, while the scaling of edge residual stress shown a opposite trend with $\rho_*^{1.26} \pm 0.63$.This suggests that as the device size increases, the core residual stress in future large devices may increase, while the edge residual stress may decrease. The difference in scaling results between the core and edge residual stress indicates that in the edge region, there are symmetry-breaking mechanisms other than E × B flow shear dominating the generation of residual stress in the scrape-off layer (SOL).A relationship was found between intrinsic torque and $\nu_*$, revealing that core intrinsic torque depends on $\nu_*^{-0.21 \pm 0.18}$.Combining the scaling results of core intrinsic torque with gyroradius and normalized collisionality, the scaling law for core intrinsic torque is obtained as $\rho_*^{-1.39 \pm 0.71} \nu_*^{0.11 \pm 0.10}$.Using plasma parameters of ITER operation scenario 1, the core intrinsic torque in future ITER plasma is predicted to be 1.0 ±6.3 N · m, which is much smaller than predicted magnitude at DIII-D.
  • [1]

    Peeters A, Angioni C, Bortolon A, Camenen Y, Casson F, Duval B, Fiederspiel L, Hornsby W, Idomura Y, Hein T, Kluy N, Mantica P, Parra F, Snodin A, Szepesi G, Strintzi D, Tala T, Tardini G, De Vries P, Weiland J 2011 Nucl. Fusion 51094027

    [2]

    Diamond P, Kosuga Y, Gürcan ff, McDevitt C, Hahm T, Fedorczak N, Rice J, Wang W, Ku S, Kwon J, Dif-Pradalier G, Abiteboul J, Wang L, Ko W, Shi Y, Ida K, Solomon W, Jhang H, Kim S, Yi S, Ko S, Sarazin Y, Singh R, Chang C 2013 Nucl. Fusion 53104019

    [3]

    Ida K, Rice J 2014 Nucl. Fusion 54045001

    [4]

    Rice J E 2016 Plasma Phys. Control. Fusion 58083001

    [5]

    Stoltzfus-Dueck T 2019 Plasma Phys. Control. Fusion 61124003

    [6]

    Garofalo A M, Strait E J, Johnson L C, La Haye R J, Lazarus E A, Navratil G A, Okabayashi M, Scoville J T, Taylor T S, Turnbull A D 2002 Phys. Rev. Lett. 89235001

    [7]

    Chapman I T, Liu Y Q, Asunta O, Graves J P, Johnson T, Jucker M 2012 Phys. Plasmas 19052502

    [8]

    Ida K, Miura Y, Matsuda T, Itoh K, Hidekuma S, Itoh S I, Jft-2M Group 1995 Phys. Rev. Lett. 741990

    [9]

    Rice J, Ince-Cushman A, deGrassie J, Eriksson L G, Sakamoto Y, Scarabosio A, Bortolon A, Burrell K, Duval B, Fenzi-Bonizec C, Greenwald M, Groebner R, Hoang G, Koide Y, Marmar E, Pochelon A, Podpaly Y 2007 Nucl. Fusion 471618

    [10]

    Yoshida M, Kamada Y, Takenaga H, Sakamoto Y, Urano H, Oyama N, Matsunaga G 2008 Phys. Rev. Lett. 100105002

    [11]

    Solomon W M, Burrell K H, deGrassie J S, Budny R, Groebner R J, Kinsey J E, Kramer G J, Luce T C, Makowski M A, Mikkelsen D, Nazikian R, Petty C C, Politzer P A, Scott S D, Van Zeeland M A, Zarnstorff M C 2007 Plasma Phys. Control. Fusion 49 B313

    [12]

    Solomon W M, Burrell K H, Garofalo A M, Kaye S M, Bell R E, Cole A J, deGrassie J S, Diamond P H, Hahm T S, Jackson G L, Lanctot M J, Petty C C, Reimerdes H, Sabbagh S A, Strait E J, Tala T, Waltz R E 2010 Phys. Plasmas 17056108

    [13]

    Chrystal C, Grierson B A, Solomon W M, Tala T, deGrassie J S, Petty C C, Salmi A, Burrell K H 2017 Phys. Plasmas 24042501

    [14]

    Rice J, Cao N, Tala T, Chrystal C, Greenwald M, Hughes J, Marmar E, Reinke M, Rodriguez Fernandez P, Salmi A 2021 Nucl. Fusion 61026013

    [15]

    Zimmermann C, McDermott R, Angioni C, Duval B, Dux R, Fable E, Salmi A, Stroth U, Tala T, Tardini G, Pütterich T, the ASDEX Upgrade Team 2023 Nucl. Fusion 63126006

    [16]

    Rice J, Duval B, Reinke M, Podpaly Y, Bortolon A, Churchill R, Cziegler I, Diamond P, Dominguez A, Ennever P, Fiore C, Granetz R, Greenwald M, Hubbard A, Hughes J, Irby J, Ma Y, Marmar E, McDermott R, Porkolab M, Tsujii N, Wolfe S 2011 Nucl. Fusion 51083005

    [17]

    Wang X, Lyu B, Lu X, Li Y, Solomon W M, Hao B, Chen J, Wang F, Fu J, Zhang H, Yang J, Bin B, He L, Li Y, Wan S, Gong X, Wan B, Ye M 2020 Plasma Sci. Technol. 22065104

    [18]

    Bae C, Jin Y, Lyu B, Hao B, Li Y, Zhang X, Liu H, Zhang H, Wang F, Fu J, Fu J, Huang J, Zeng L, Zang Q, Li Y, He L, Lu D 2024 Plasma Phys. Control. Fusion 66045020

    [19]

    Yang S, Na Y S, Na D, Park J K, Shi Y, Ko W, Lee S, Hahm T 2018 Nucl. Fusion 58066008

    [20]

    Zimmermann C F B, McDermott R M, Fable E, Angioni C, Duval B P, Dux R, Salmi A, Stroth U, Tala T, Tardini G, Pütterich T 2022 Plasma Phys. Control. Fusion 64055020

    [21]

    Ohtani Y, Yoshida M, Honda M, Narita E 2021 AIP Adv. 11085306

    [22]

    Wan B, Gong X, Liang Y, Xiang N, Xu G, Sun Y, Wang L, Qian J, Liu H, Zhang B, Xia T, Huang J, Ding R, Zhang T, Zuo G, Sun Z, Zeng L, Zhang X, Zang Q, Lyu B, Garofalo A, Li G, Li K, Yang Q, For The East Team And Collaborators 2022 Nucl. Fusion 62042010

    [23]

    Liu H, Jie Y, Ding W, Brower D, Zou Z, Qian J, Li W, Yang Y, Zeng L, Zhang S, Lan T, Wang S, Hanada K, Wei X, Hu L, Wan B 2016 JINST 11 C01049

    [24]

    Zang Q, Zhao J, Yang L, Hu Q, Xi X, Dai X, Yang J, Han X, Li M, Hsieh C L 2011 Rev. Sci. Instrum. 82063502

    [25]

    Zhao H, Zhou T, Liu Y, Ti A, Ling B, Austin M E, Houshmandyar S, Huang H, Rowan W L, Hu L 2018 Rev. Sci. Instrum. 8910H111

    [26]

    Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, von Hellermann M, Shi Y J, Ye M Y, Wan B N 2014 Rev. Sci. Instrum. 8511E428

    [27]

    Yin X H, Li Y Y, Fu J, Jiang D, Feng S Y, Gu Y Q, Cheng Y, Lyu B, Shi Y J, Ye M Y, Wan B N 2016 Rev. Sci. Instrum. 8711E539

    [28]

    Yin X, Li Y, Fu J, Jiang D, Lyu B, Shi Y, Ye M, Wan B 2019 Fusion Eng. Des. 148111282

    [29]

    Yoshida M, Koide Y, Takenaga H, Urano H, Oyama N, Kamiya K, Sakamoto Y, Kamada Y, Team T J 2006 Plasma Phys. Control. Fusion 481673

    [30]

    Tala T, Crombé K, De Vries P C, Ferreira J, Mantica P, Peeters A G, Andrew Y, Budny R, Corrigan G, Eriksson A, Garbet X, Giroud C, Hua M D, Nordman H, Naulin V, Nave M F F, Parail V, Rantamäki K, Scott B D, Strand P, Tardini G, Thyagaraja A, Weiland J, Zastrow K D, JET-EFDA Contributors 2007 Plasma Phys. Control. Fusion 49 B291

    [31]

    Ryter F, Dux R, Mantica P, Tala T 2010 Plasma Phys. Control. Fusion 52124043. Number:12

    [32]

    Yang J, Chen J, Wang F D, Li Y Y, Lyu B, Xiang D, Yin X H, Zhang H M, Fu J, Liu H Q, Zang Q, Chu Y Q, Liu J W, Wang X Y, Bin B, He L, Wan S K, Gong X Y, Ye M Y 2020 Acta Phys. Sin. 69055201

    [33]

    Bae C, Stacey W, Solomon W 2013 Nucl. Fusion 53043011

    [34]

    Bae C, Jin Y, Lyu B, Fu J, Wang F, Zhang H 2024 Comput. Phys. Commun. 296108992

    [35]

    GOLDSTON R J 1981 J. Comput. Phys. 4361

    [36]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159157

    [37]

    Solomon W, Burrell K, deGrassie J, Boedo J, Garofalo A, Moyer R, Muller S, Petty C, Reimerdes H 2011 Nucl. Fusion 51073010

    [38]

    Rice J E, Ince-Cushman A C, Reinke M L, Podpaly Y, Greenwald M J, LaBombard B, Marmar E S 2008 Plasma Phys. Control. Fusion 50124042

    [39]

    Kosuga Y, Diamond P H, Gürcan ff D 2010 Phys. Plasmas 17102313

    [40]

    Green B J, Team I I, Teams P 2003 Plasma Phys. Control. Fusion 45687

    [41]

    III R W B, Stoltzfus-Dueck T 2024 Plasma Phys. Control. Fusion 66065011

    [42]

    Parra F I, Barnes M 2015 Plasma Phys. Control. Fusionn 57045002

  • [1] Jin Yi-Fei, Zhang Hong-Ming, Yin Xiang-Hui, Lü Bo, Cheonho Bae, Ye Kai-Xuan, Sheng Hui, Wang Shi-Fan, Zhao Hai-Lin, Gu Shuai, Yuan Hong, Lin Zi-Chao, Fu Sheng-Yu, Lu Di-An, Fu Jia, Wang Fu-Di. Experimental investigations on physical mechanisms of RMP-induced intrinsic rotations at EAST. Acta Physica Sinica, doi: 10.7498/aps.73.20241357
    [2] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, doi: 10.7498/aps.72.20222043
    [3] Zhu Xiao-Long, Chen Wei, Wang Feng, Wang Zheng-Xiong. Hybrid numerical simulation on fast particle transport induced by synergistic interaction of low- and medium-frequency magnetohydrodynamic instabilities in tokamak plasma. Acta Physica Sinica, doi: 10.7498/aps.72.20230620
    [4] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, doi: 10.7498/aps.72.20230991
    [5] Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu. Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak. Acta Physica Sinica, doi: 10.7498/aps.70.20202003
    [6] Lu Yong-Jun, Yang Yi, Wang Feng-Hui, Lou Kang, Zhao Xiang. Effect of continuously graded functional layer on curvature and residual stress of solid oxide fuel cell in initial reduction process. Acta Physica Sinica, doi: 10.7498/aps.65.098102
    [7] Wang Hong, Yun Feng, Liu Shuo, Huang Ya-Ping, Wang Yue, Zhang Wei-Han, Wei Zheng-Hong, Ding Wen, Li Yu-Feng, Zhang Ye, Guo Mao-Feng. Effect of wafer bonding and laser liftoff process on residual stress of GaN-based vertical light emitting diode chips. Acta Physica Sinica, doi: 10.7498/aps.64.028501
    [8] Zhang Chong-Yang, Liu A-Di, Li Hong, Chen Zhi-Peng, Li Bin, Yang Zhou-Jun, Zhou Chu, Xie Jin-Lin, Lan Tao, Liu Wan-Dong, Zhuang Ge, Yu Chang-Xuan. Application of dual-polarization frequency-modulated microwave reflectometer to J-TEXT tokamak. Acta Physica Sinica, doi: 10.7498/aps.63.125204
    [9] Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen. Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0. Acta Physica Sinica, doi: 10.7498/aps.62.245206
    [10] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, doi: 10.7498/aps.61.115207
    [11] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, doi: 10.7498/aps.59.5596
    [12] Xu Qiang, Gao Xiang, Shan Jia-Fang, Hu Li-Qun, Zhao Jun-Yu. Experimental study of large power lower hybrid current drive on HT-7 tokamak. Acta Physica Sinica, doi: 10.7498/aps.58.8448
    [13] Jiang Yang, Luo Yi, Xi Guang-Yi, Wang Lai, Li Hong-Tao, Zhao Wei, Han Yan-Jun. Effect of AlGaN intermediate layer on residual stress control and surface morphology of GaN grown on 6H-SiC substrate by metal organic vapour phase epitaxy. Acta Physica Sinica, doi: 10.7498/aps.58.7282
    [14] Cen Min, Zhang Yue-Guang, Chen Wei-Lan, Gu Pei-Fu. Influences of deposition rate and oxygen partial pressure on residual stress of HfO2 films. Acta Physica Sinica, doi: 10.7498/aps.58.7025
    [15] Kong De-Jun, Zhang Yong-Kang, Chen Zhi-Gang, Lu Jin-Zhong, Feng Ai-Xin, Ren Xu-Dong, Ge Tao. Experimental study of residual stress of galvanized passive film based on XRD. Acta Physica Sinica, doi: 10.7498/aps.56.4056
    [16] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, doi: 10.7498/aps.55.1307
    [17] Di Yu-Xian, Ji Xin-Hua, Hu Ming, Qin Yu-Wen, Chen Jin-Long. Residual stress measurement of porous silicon thin film by substrate curvature method. Acta Physica Sinica, doi: 10.7498/aps.55.5451
    [18] Shao Shu-Ying, Fan Zheng-Xiu, Shao Jian-Da. Influences of the period of repeating thickness on the stress of alternative high and low refractivity ZrO2/SiO2 multilayers. Acta Physica Sinica, doi: 10.7498/aps.54.3312
    [19] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, doi: 10.7498/aps.52.1970
    [20] WANG WEN-HAO, XU YU-HONG, YU CHANG-XUAN, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. ELECTROSTATIC FLUCTUATIONS AND TURBULENT TRANSPORT STUDIES IN THE HT-7 SUPERCONDUCTING TOKAMAK EDGE PLASMAS . Acta Physica Sinica, doi: 10.7498/aps.50.1956
Metrics
  • Abstract views:  55
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  06 March 2025

/

返回文章
返回