Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development of charge-discharge circuitry based on supercapacitor and its application to limiter probe diagnostics in EAST

Zhang Wen-Bo Liu Shao-Cheng Liao Liang Wei Wen-Yin Li Le-Tian Wang Liang Yan Ning Qian Jin-Ping Zang Qing

Citation:

Development of charge-discharge circuitry based on supercapacitor and its application to limiter probe diagnostics in EAST

Zhang Wen-Bo, Liu Shao-Cheng, Liao Liang, Wei Wen-Yin, Li Le-Tian, Wang Liang, Yan Ning, Qian Jin-Ping, Zang Qing
PDF
HTML
Get Citation
  • The EAST limiter probe is installed on the front surface of guard limiter, which consists of two columns and can operate in floating potential mode, ion saturation current mode, and swept single-probe mode simultaneously. When Langmuir probe operates in the ion saturation current mode, it requires a stable biasing voltage. To meet this requirement, a large capacitor is used to provide a biasing voltage for the probe. Comparing with the 9 V dry batteries that are commonly used in magnetic confinement fusion devices, employing a large capacitor offers advantages such as flexible voltage adjustment, easy maintenance, and environmental friendliness. Therefore, we have designed and tested a complete set of supercapacitor charge-discharge control circuitry. In this work, a control software is developed for the supercapacitor charge-discharge control circuitry based on the Python language to enable the remote and automatic controlling of the circuitry operation. As demonstrated in experiments, the capacitor charge-discharge control circuitry can supply stable biasing voltage output for the probe under long-pulse discharge, and it is workable in complex electromagnetic environment of magnetic confinement fusion device. By implementing the supercapacitor charge-discharge control circuitry in EAST limiter probe diagnostics, the three-dimensional distributions of plasma parameters are measured, such as ion saturation current, floating potential, electron temperature, and plasma density. In a lower hybrid wave (LHW) heating experiment, the 2.45 GHz LHW is found to generate larger electron density than the 4.6 GHz LHW, and the largest electron density appears when both the 2.45 GHz and 4.6 GHz LHWs are turned on simultaneously. These experimental results confirm that supercapacitor charge-discharge control circuitry can be operated reliably and stably.
      Corresponding author: Liu Shao-Cheng, lshch@ipp.ac.cn ; Wang Liang, lwang@ipp.ac.cn
    • Funds: Project supported by the National MCF Energy R&D Program of China (Grant No. 2019YFE03040000), the National Natural Science Foundation of China (Grant Nos. 12275310, 12275312), the Science Foundation of Institute of Plasma Physics, Chinese Academy of Sciences (Grant No. DSJJ-2021-01), the Collaborative Innovation Program of Hefei Science Center, CAS (Grant No. 2021HSC-CIP019), and the Users with Excellence Program of Hefei Science Center, CAS (Grant Nos. 2021HSC-UE014, 2021HSC-UE012).
    [1]

    Johnson E O, Malter L 1950 Phys. Rev. 80 58Google Scholar

    [2]

    Perkins R J, Hosea J C, Taylor G, Bertelli N, Kramer G J, Luo Z P, Qin C M, Wang L, Xu J C, Zhang X J 2019 Plasma. Phys. Contr. F 61 045011Google Scholar

    [3]

    Wang F M, Gan K F, Gong X Z, Team E 2013 Plasma Sci. Technol. 15 225Google Scholar

    [4]

    Yan L W, Hong W Y, Qian J, Luo C W, Pan L 2005 Rev. Sci. Instrum. 76 093506Google Scholar

    [5]

    Ming T F, Zhang W, Chang J F, Wang J, Xu G S, Ding S, Yan N, Gao X, Guo H Y 2009 Fusion. Eng. Des. 84 57Google Scholar

    [6]

    Xu J C, Wang L, Xu G S, Luo G N, Yao D M, Li Q, Cao L, Chen L, Zhang W, Liu S C, Wang H Q, Jia M N, Feng W, Deng G Z, Hu L Q, Wan B N, Li J, Sun Y W, Guo H Y 2016 Rev. Sci. Instrum. 87 083504Google Scholar

    [7]

    Yang J, Chen Z P, Liu H, Wang T, Zhu M C, Song Z, Wang Z, Zhuang G, Ding Y, Team J T 2019 Plasma Sci. Technol. 21 105105Google Scholar

    [8]

    Labombard B, Lipschultz B 1986 Rev. Sci. Instrum. 57 2415Google Scholar

    [9]

    Asakura N, Shimizu K, Hosogane N, Itami K, Tsuji S, Shimada M 1995 Nucl. Fusion 35 381Google Scholar

    [10]

    Buchenauer D, Hsu W L, Smith J P, Hill D N 1990 Rev. Sci. Instrum. 61 2873Google Scholar

    [11]

    Liu S C, Liao L, Wei W Y, Liang Y, Xu J C, Cao L, Li S, Li L, Meng L Y, Qian J P, Zang Q, Wang L, Xu S, Cai J, Yan N, Ma Q, Zhao N, Chen R, Hu G H, Liu J B, Liu X J, Ming T F, Li L T, Sun Y, Zeng L, Li G Q, Yao D M, Xu G S, Gong X Z, Gao X, EAST Team 2022 Fusion. Eng. Des. 180 113162Google Scholar

    [12]

    Demidov V I, Ratynskaia S V, Rypdal K 2002 Rev. Sci. Instrum. 73 3409Google Scholar

    [13]

    李永春, 丁伯江, 李妙辉, 王茂, 刘亮, 吴陈斌, 阎广厚 2022 核电子学与探测技术 42 116Google Scholar

    Li Y C, Ding B J, Li M H, Wang M, Liu L, Wu C B, Yan G H 2022 Nucl. Electron. Detect. Technol. 42 116Google Scholar

    [14]

    Back R, Bengtson R D 1997 Rev. Sci. Instrum. 68 377Google Scholar

    [15]

    Yan N, Naulin V, Xu G S, Rasmussen J J, Wang H Q, Liu S C, Wang L, Liang Y, Nielsen A H, Madsen J, Guo H Y, Wan B N 2014 Plasma Phys. Contr. F 56 095023Google Scholar

    [16]

    Myra J R, Lau C, Van Compernolle B, Vincena S, Wright J C 2020 Phys. Plasmas 27 072506Google Scholar

    [17]

    Xu G S, Wan B N, Zhang W 2006 Rev. Sci. Instrum. 77 063505Google Scholar

    [18]

    Myra J R 2021 J. Plasm. Phys. 87 1Google Scholar

    [19]

    Liu P, Xu G S, Wang H Q, Jiang M, Wang L, Zhang W, Liu S C, Yan N, Ding S Y 2013 Plasma Sci. Technol. 15 619Google Scholar

    [20]

    Colas L, Urbanczyk G, Goniche M, Hillairet J, Bernard J M, Bourdelle C, Fedorczak N, Guillemaut C, Helou W, Bobkov V, Ochoukov R, Jacquet P, Lerche E, Zhang X, Qin C, Klepper C C, Lau C, Van Compernolle B, Wukitch S J, Lin Y, Ono M, Contributors J, Team A U, Team E, Team W, Ios I 2022 Nucl. Fusion 62 016014Google Scholar

    [21]

    Ochoukov R, Whyte D G, Brunner D, D'Ippolito D A, LaBombard B, Lipschultz B, Myra J R, Terry J L, Wukitch S J 2014 Aip. Conf. Proc. 1580 267Google Scholar

  • 图 1  超级电容器充放电控制电路设计图

    Figure 1.  Supercapacitor charge-discharge control circuitry.

    图 2  电容充放电控制电路的自动控制流程图

    Figure 2.  Flow diagram of the automatic control mode.

    图 3  电容充放电控制软件的设置界面

    Figure 3.  Setting interface of the capacitor charge-discharge control software.

    图 4  电容充放电控制软件的运行界面

    Figure 4.  Operating interface of capacitor charge-discharge control software.

    图 5  电容充放电控制软件的电源设置界面

    Figure 5.  Power supply setting interface of capacitor charge-discharge control software.

    图 6  组装完成的超级电容器控制电路实物图

    Figure 6.  Photo of the assembled supercapacitor control circuit.

    图 7  电容器的初始电压

    Figure 7.  Initial voltage of the capacitors.

    图 8  电容器充电曲线, 其中通道1—32, 使用1台直流电源同时为4台电容器充电; 通道33—35, 使用1台直流电源为3台电容器充电

    Figure 8.  Charge curve of capacitor. Note that one power supply is used to charge four capacitors for channel 1–32, and one power supply is used to charge three capacitors for channel 33–35.

    图 9  电阻放电的界面

    Figure 9.  Interface of resistance discharge.

    图 10  电容自然漏电曲线图

    Figure 10.  Natural leakage curve of capacitor.

    图 11  EAST长脉冲放电过程中(a)等离子体电流、探针 (b)偏压和 (c)离子饱和流随时间演化

    Figure 11.  Temporal evolution of (a) plasma current, (b) biasing voltage and (c) ion saturation current of limiter probe during a long-pulse discharge on EAST.

    图 12  限制器探针的离子饱和流测量电路

    Figure 12.  Electrical circuit for ion saturation current measurement of limiter probe.

    图 13  #106532次放电的限制器探针工作状态分布图

    Figure 13.  Circuit setup of limiter probe array for discharge #106532.

    图 14  #106532次放电低杂波注入功率与限制器探针测量参数随时间演化 (a) 2.45 GHz (黑色)与4.6 GHz (红色)低杂波注入功率, 超声分子束注入信号(橘黄色); (b)限制器探针左侧离子饱和流分布; (c)右侧离子饱和流分布; (d)左侧悬浮电位分布; (e)右侧悬浮电位分布

    Figure 14.  Temporal evolutions of LHW power and SOL parameters measured by limiter probe are presented as follows: (a) LHW heating power of 2.45 GHz antenna (black) and 4.6 GHz antenna (red), along with the SMBI signal (orange); (b) distribution of ion saturation current of the limiter probe on the left side; (c) distribution of ion saturation current on the right side; (d) distribution of floating potential on the left side; (e) distribution of floating potential on the right side.

    图 15  #106532次放电低杂波注入功率与限制器探针测量参数随时间演化 (a) 2.45 GHz (黑色)与4.6 GHz (红色)低杂波注入功率, 超声分子束注入信号(橘黄色); 限制器探针测量的(b)电子温度、(c)电子密度、(d)粒子通量和(e)热通量, 其中蓝色线条代表第14号探针(位于限制器左侧阵列中部), 红色线条代表第40号探针(位于限制器右侧阵列中部)

    Figure 15.  Temporal evolution of LHW power and SOL parameters measured by limiter probe are presented as follows: (a) LHW power of 2.45 GHz antenna (black) and 4.6 GHz antenna (red), along with the SMBI signal (orange); (b) electron temperature; (c) electron density; (d) particle flow; (e) heat flow. The blue lines represent channel 14 (in the left array of the limiter, near the midplane), and the red lines represent channel 40 (in the right array of the limiter, near the midplane).

    表 1  超级电容器充放电电路4种模式下继电器开关的状态组合

    Table 1.  State combinations of relay switches in four modes of supercapacitor charging and discharging circuits.

    电路模式S1S2S3S4S5S6
    充电闭合闭合闭合断开断开断开
    工作输出断开断开断开断开闭合闭合
    电容放电断开断开闭合闭合断开断开
    关断断开断开断开断开断开断开
    DownLoad: CSV
  • [1]

    Johnson E O, Malter L 1950 Phys. Rev. 80 58Google Scholar

    [2]

    Perkins R J, Hosea J C, Taylor G, Bertelli N, Kramer G J, Luo Z P, Qin C M, Wang L, Xu J C, Zhang X J 2019 Plasma. Phys. Contr. F 61 045011Google Scholar

    [3]

    Wang F M, Gan K F, Gong X Z, Team E 2013 Plasma Sci. Technol. 15 225Google Scholar

    [4]

    Yan L W, Hong W Y, Qian J, Luo C W, Pan L 2005 Rev. Sci. Instrum. 76 093506Google Scholar

    [5]

    Ming T F, Zhang W, Chang J F, Wang J, Xu G S, Ding S, Yan N, Gao X, Guo H Y 2009 Fusion. Eng. Des. 84 57Google Scholar

    [6]

    Xu J C, Wang L, Xu G S, Luo G N, Yao D M, Li Q, Cao L, Chen L, Zhang W, Liu S C, Wang H Q, Jia M N, Feng W, Deng G Z, Hu L Q, Wan B N, Li J, Sun Y W, Guo H Y 2016 Rev. Sci. Instrum. 87 083504Google Scholar

    [7]

    Yang J, Chen Z P, Liu H, Wang T, Zhu M C, Song Z, Wang Z, Zhuang G, Ding Y, Team J T 2019 Plasma Sci. Technol. 21 105105Google Scholar

    [8]

    Labombard B, Lipschultz B 1986 Rev. Sci. Instrum. 57 2415Google Scholar

    [9]

    Asakura N, Shimizu K, Hosogane N, Itami K, Tsuji S, Shimada M 1995 Nucl. Fusion 35 381Google Scholar

    [10]

    Buchenauer D, Hsu W L, Smith J P, Hill D N 1990 Rev. Sci. Instrum. 61 2873Google Scholar

    [11]

    Liu S C, Liao L, Wei W Y, Liang Y, Xu J C, Cao L, Li S, Li L, Meng L Y, Qian J P, Zang Q, Wang L, Xu S, Cai J, Yan N, Ma Q, Zhao N, Chen R, Hu G H, Liu J B, Liu X J, Ming T F, Li L T, Sun Y, Zeng L, Li G Q, Yao D M, Xu G S, Gong X Z, Gao X, EAST Team 2022 Fusion. Eng. Des. 180 113162Google Scholar

    [12]

    Demidov V I, Ratynskaia S V, Rypdal K 2002 Rev. Sci. Instrum. 73 3409Google Scholar

    [13]

    李永春, 丁伯江, 李妙辉, 王茂, 刘亮, 吴陈斌, 阎广厚 2022 核电子学与探测技术 42 116Google Scholar

    Li Y C, Ding B J, Li M H, Wang M, Liu L, Wu C B, Yan G H 2022 Nucl. Electron. Detect. Technol. 42 116Google Scholar

    [14]

    Back R, Bengtson R D 1997 Rev. Sci. Instrum. 68 377Google Scholar

    [15]

    Yan N, Naulin V, Xu G S, Rasmussen J J, Wang H Q, Liu S C, Wang L, Liang Y, Nielsen A H, Madsen J, Guo H Y, Wan B N 2014 Plasma Phys. Contr. F 56 095023Google Scholar

    [16]

    Myra J R, Lau C, Van Compernolle B, Vincena S, Wright J C 2020 Phys. Plasmas 27 072506Google Scholar

    [17]

    Xu G S, Wan B N, Zhang W 2006 Rev. Sci. Instrum. 77 063505Google Scholar

    [18]

    Myra J R 2021 J. Plasm. Phys. 87 1Google Scholar

    [19]

    Liu P, Xu G S, Wang H Q, Jiang M, Wang L, Zhang W, Liu S C, Yan N, Ding S Y 2013 Plasma Sci. Technol. 15 619Google Scholar

    [20]

    Colas L, Urbanczyk G, Goniche M, Hillairet J, Bernard J M, Bourdelle C, Fedorczak N, Guillemaut C, Helou W, Bobkov V, Ochoukov R, Jacquet P, Lerche E, Zhang X, Qin C, Klepper C C, Lau C, Van Compernolle B, Wukitch S J, Lin Y, Ono M, Contributors J, Team A U, Team E, Team W, Ios I 2022 Nucl. Fusion 62 016014Google Scholar

    [21]

    Ochoukov R, Whyte D G, Brunner D, D'Ippolito D A, LaBombard B, Lipschultz B, Myra J R, Terry J L, Wukitch S J 2014 Aip. Conf. Proc. 1580 267Google Scholar

  • [1] Sun You-Wen, Qiu Zhi-Yong, Wan Bao-Nian. Current status and prospects of burning plasma physics in magnetically confined fusion. Acta Physica Sinica, 2024, 73(17): 175202. doi: 10.7498/aps.73.20240831
    [2] Zhang Qi-Fan, Le Wen-Cheng, Zhang Yu-Hao, Ge Zhong-Xin, Kuang Zhi-Qiang, Xiao Sheng-Yang, Wang Lu. Effects of radiation from tungsten impurities on the thermal energy loss during the fast thermal quench stage of major disruption in tokamak plasmas. Acta Physica Sinica, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [3] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [4] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [5] Cao Li-Yang, Ma Xiao-Ping, Deng Li-Li, Lu Man-Ting, Xin Yu. Axial diagnosis of radio-frequency capacitively coupled Ar/O2 plasma. Acta Physica Sinica, 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [6] Ye An-Na, Zhang Xiao-Hua, Yang Zhao-Hui. Redox-enhanced solid-state supercapacitor based on hydroquinone-containing gel electrolyte/ carbon nanotube arrays. Acta Physica Sinica, 2020, 69(12): 126101. doi: 10.7498/aps.69.20200204
    [7] Zhang Xin, Chen Xing, Bai Tian, You Xing-Yan, Zhao Xin, Liu Xiang-Yang, Ye Mei-Dan. Recent advances in flexible fiber-shaped supercapacitors. Acta Physica Sinica, 2020, 69(17): 178201. doi: 10.7498/aps.69.20200159
    [8] Shao Guang-Wei, Guo Shan-Shan, Yu Rui, Chen Nan-Liang, Ye Mei-Dan, Liu Xiang-Yang. Stretchable supercapacitors: Electrodes, electrolytes, and devices. Acta Physica Sinica, 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [9] Wu Meng-Dan, Zhou Sheng-Lin, Ye An-Na, Wang Min, Zhang Xiao-Hua, Yang Zhao-Hui. High-voltage flexible solid state supercapacitor based on neutral hydrogel/carbon nanotube arrays. Acta Physica Sinica, 2019, 68(10): 108201. doi: 10.7498/aps.68.20182288
    [10] Zhu Qi, Yuan Xie-Tao, Zhu Yi-Hao, Zhang Xiao-Hua, Yang Zhao-Hui. Flexible solid-state supercapacitors based on shrunk high-density aligned carbon nanotube arrays. Acta Physica Sinica, 2018, 67(2): 028201. doi: 10.7498/aps.67.20171855
    [11] Yang Yu, Tang Cheng-Shuang, Zhao Yi-Fan, Yu Yi-Qing, Xin Yu. Electronegativity of capacitively coupled Ar+O2 plasma excited at very high frequency. Acta Physica Sinica, 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [12] Zhang Cheng, Deng Ming-Sen, Cai Shao-Hong. Co3O4 mesoporous nanostructure supported by Ni foam as high-performance supercapacitor electrodes. Acta Physica Sinica, 2017, 66(12): 128201. doi: 10.7498/aps.66.128201
    [13] Liu Chao, Guan Yi-Bing, Zhang Ai-Bing, Zheng Xiang-Zhi, Sun Yue-Qiang. The ionosphere measurement technology of Langmuir probe on China seismo-electromagnetic satellite. Acta Physica Sinica, 2016, 65(18): 189401. doi: 10.7498/aps.65.189401
    [14] Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen. Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0. Acta Physica Sinica, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [15] Lu Hong-Wei, Zha Xue-Jun, Hu Li-Qun, Lin Shi-Yao, Zhou Rui-Jie, Luo Jia-Rong, Zhong Fang-Chuan. The effect of gas puffing on plasma during slide-away discharge in the HT-7 tokamak. Acta Physica Sinica, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [16] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [17] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [18] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [19] WANG WEN-HAO, YU CHANG-XUAN, XU YU-HONG, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. MEASUREMENT OF EDGE PLASMA PARAMETERS AND THEIR ELECTROSTATIC FLUCTUATIONS ON THE HT-7 SUPERCONDUCTING TOKAMAK. Acta Physica Sinica, 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [20] ZHANG XIAN-MEI, WAN BAO-NIAN, RUAN HUAI-LIN, WU ZHEN-WEI. STUDY OF THE ELECTRON THERMAL CONDUCTIVITY OF THE OHMICALLY HEATED DISCHARGES IN THE HT-7 TOKAMAK. Acta Physica Sinica, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
Metrics
  • Abstract views:  2036
  • PDF Downloads:  53
  • Cited By: 0
Publishing process
  • Received Date:  25 October 2023
  • Accepted Date:  06 December 2023
  • Available Online:  22 December 2023
  • Published Online:  20 March 2024

/

返回文章
返回