Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Current status and prospects of burning plasma physics in magnetically confined fusion

Sun You-Wen Qiu Zhi-Yong Wan Bao-Nian

Citation:

Current status and prospects of burning plasma physics in magnetically confined fusion

Sun You-Wen, Qiu Zhi-Yong, Wan Bao-Nian
PDF
HTML
Get Citation
  • Current status and challenges of key physics related to high-confinement operational scenarios and energetic particle confinement are briefly reviewed from the perspective of design and operation of tokamak-based fusion reactors. In the past few decades, significant progress has been made in the research on high-confinement mode physics, i.e. the main stability and confinement constraints on operational window of a fusion reactor have been identified, and some control methods for adjusting plasma kinetic profiles to optimize performance have been developed. Several operational scenarios, including inductive, hybrid and steady-state etc, which are potentially applicable for future reactors, have been developed. In the conditions that fusion alpha particle self-heating is predominant and shear Alfvén wave (SAW) instabilities potentially dominate fusion alpha particle transport, the SAW linear stability properties and excitation mechanisms are understood in depth, and the SAW instabilities nonlinear saturation, alpha particle confinement, and the influence of the heating deposition and the micro-turbulence regulation on fusion profile are under extensive investigation. The magnetically confined fusion research has entered a new stage of ignition and burning plasma physics, and new challenges that are faced are addressed, including whether efficient self-heating of plasmas by fusion alpha particles can be achieved, how the plasma stability and high-confinement can be maintained through the active control of key plasma profiles under the condition of dominant alpha particle heating, and whether it is possible to establish accurate models to predict long time scale complex dynamical evolution of fusion plasmas etc. Solving these key problems will lay a solid scientific foundation for designing and operating future fusion reactors as well as promote the development of plasma science.
      Corresponding author: Wan Bao-Nian, bnwan@ipp.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Anhui Province, China (Grant No. 2208085J39) and the National Natural Science Foundation of China (Grant No. 12275236).
    [1]

    Ongena J, Koch R, Wolf R, Zohm H 2016 Nat. Phys. 12 398Google Scholar

    [2]

    Wan B N, Xu G S 2023 Natl. Sci. Rev. 10 nwad217Google Scholar

    [3]

    Artsimovich L 1972 Nucl. Fusion 12 215Google Scholar

    [4]

    Wurzel S E, Hsu S C 2022 Phys. Plasmas 29 062103Google Scholar

    [5]

    Keilhacker M, Gibson A, Gormezano C, Lomas P, Thomas P, Watkins M, Andrew P, Balet B, Borba D, Challis C 1999 Nucl. Fusion 39 209Google Scholar

    [6]

    Hawryluk R 1998 Rev. Mod. Phys. 70 537Google Scholar

    [7]

    ITER-team 2001 ITER EDA Documentation Series No. 22: Summary of the ITER Final Design Report Report

    [8]

    EUROfusion 2018 European Research Roadmap to the Realisation LONG VERSION of Fusion Energy Report

    [9]

    National Academies of Sciences and Engineering and Medicine 2021 Bringing Fusion to the US Grid (Washington: The National Academies Press

    [10]

    Department for Energy Security & Net Zero 2023 Towards Fusion Energy 2023 - The Next Stage of the UK’s Fusion Energy Strategy Report

    [11]

    Hsu S C 2023 J. Fusion Energy 42 12Google Scholar

    [12]

    ITER-Organization 2018 ITER Research Plan within the Staged Approach (Level III - Provisional Version), ITER Technical Report ITR18003, Report

    [13]

    Wesson J, Campbell D J 2011 Tokamaks (Vol. 149) (Oxford University Press

    [14]

    Troyon F, Gruber R, Saurenmann H, Semenzato S, Succi S 1984 Plasma Phys. Control. Fusion 26 209Google Scholar

    [15]

    Strait E 1994 Phys. Plasmas 1 1415Google Scholar

    [16]

    ITER Physics Expert Group on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database, ITER Physics Basis Editors 1999 Nucl. Fusion 39 2175Google Scholar

    [17]

    Heidbrink W 2008 Phys. Plasmas 15 055501Google Scholar

    [18]

    Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27Google Scholar

    [19]

    Gormezano C, Sips A, Luce T, Ide S, Becoulet A, Litaudon X, Isayama A, Hobirk J, Wade M, Oikawa T 2007 Nucl. Fusion 47 S285Google Scholar

    [20]

    Fujita T, Ide S, Kamada Y, Suzuki T, Oikawa T, Takeji S, Sakamoto Y, Koide Y, Isayama A, Hatae T 2001 Phys. Rev. Lett. 87 085001Google Scholar

    [21]

    Loarte A, Lipschultz B, Kukushkin A 2007 Nucl. Fusion 47 S203Google Scholar

    [22]

    Eich T, Leonard A, Pitts R, Fundamenski W, Goldston R J, Gray T, Herrmann A, Kirk A, Kallenbach A, Kardaun O 2013 Nucl. Fusion 53 093031Google Scholar

    [23]

    Sips A, Giruzzi G, Ide S, Kessel C, Luce T, Snipes J, Stober J 2015 Phys. Plasmas 22 021804Google Scholar

    [24]

    Wagner F, Becker G, Behringer K, Campbell D, Eberhagen A, Engelhardt W, Fussmann G, Gehre O, Gernhardt J, Gierke G v 1982 Phys. Rev. Lett. 49 1408Google Scholar

    [25]

    Shaing K C, Crume Jr E 1989 Phys. Rev. Lett. 63 2369Google Scholar

    [26]

    Diamond P H, Liang Y M, Carreras B A, Terry P W 1994 Phys. Rev. Lett. 72 2565Google Scholar

    [27]

    Doyle E, Houlberg W, Kamada Y, Mukhovatov V, Osborne T, Polevoi A, Bateman G, Connor J, Cordey J, Fujita T 2007 Nucl. Fusion 47 S18Google Scholar

    [28]

    Creely A, Brunner D, Mumgaard R, Reinke M, Segal M, Sorbom B, Greenwald M 2023 Phys. Plasmas 30 090601Google Scholar

    [29]

    Chang Z, Callen J D, Fredrickson E D, Budny R V, Hegna C C, McGuire K M, Zarnstorff M C, TFTR Group 1995 Phys. Rev. Lett. 74 4663Google Scholar

    [30]

    Hender T, Wesley J, Bialek J, Bondeson A, Boozer A, Buttery R, Garofalo A, Goodman T, Granetz R, Gribov Y 2007 Nucl. Fusion 47 S128Google Scholar

    [31]

    Solomon W, Politzer P, Buttery R, Holcomb C, Ferron J, Garofalo A, Grierson B, Hanson J, In Y, Jackson G 2013 Nucl. Fusion 53 093033Google Scholar

    [32]

    Porcelli F, Boucher D, Rosenbluth M 1996 Plasma Phys. Control. Fusion 38 2163Google Scholar

    [33]

    De Vries P, Johnson M, Alper B, Buratti P, Hender T, Koslowski H, Riccardo V, Contributors J E 2011 Nucl. Fusion 51 053018Google Scholar

    [34]

    La Haye R 2006 Phys. Plasmas 13 055501Google Scholar

    [35]

    Poli F M, Fredrickson E, Henderson M A, Kim S-H, Bertelli N, Poli E, Farina D, Figini L 2018 Nucl. Fusion 58 016007Google Scholar

    [36]

    Wang X G, Zhang X D, Yu Q Q, Wu B, Zhu S Z, Wang J F, Zhang Y, Wang X J 2015 Nucl. Fusion 55 093024Google Scholar

    [37]

    Reiman A, Fisch N 2018 Phys. Rev. Lett. 121 225001Google Scholar

    [38]

    Liu T, Wang Z X, Wei L, Wang J L, Reiman A 2024 Nucl. Fusion 64 036001Google Scholar

    [39]

    Zohm H 1996 Plasma Phys. Control. Fusion 38 105Google Scholar

    [40]

    Loarte A, Saibene G, Sartori R, Campbell D, Becoulet M, Horton L, Eich T, Herrmann A, Matthews G, Asakura N 2003 Plasma Phys. Control. Fusion 45 1549Google Scholar

    [41]

    Evans T, Moyer R, Thomas P, Watkins J, Osborne T, Boedo J, Doyle E, Fenstermacher M, Finken K, Groebner R 2004 Phys. Rev. Lett. 92 235003Google Scholar

    [42]

    Sun Y W, Liang Y, Liu Y, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H H, Zhang T, Qian J, Xu L, He K, Chen D, Shen B, Gong X, Ji X, Wang S, Qi M, Song Y, Yuan Q, Sheng Z, Gao G, Fu P, Wan B N 2016 Phys. Rev. Lett. 117 115001Google Scholar

    [43]

    Liang Y, Koslowski H, Thomas P, Nardon E, Alper B, Andrew P, Andrew Y, Arnoux G, Baranov Y, Bécoulet M 2007 Phys. Rev. Lett. 98 265004Google Scholar

    [44]

    Hawryluk R, Campbell D, Janeschitz G, Thomas P, Albanese R, Ambrosino R, Bachmann C, Baylor L, Becoulet M, Benfatto I 2009 Nucl. Fusion 49 065012Google Scholar

    [45]

    Murakami M, Greenfield C, Wade M, Luce T, Ferron J, St John H, Makowski M, Austin M, Allen S, Brennan D 2005 Nucl. Fusion 45 1419Google Scholar

    [46]

    Goniche M, Dumont R, Bourdelle C, Decker J, Delpech L, Ekedahl A, Guilhem D, Litaudon X, Lotte P, Maget P 2014 AIP Conf. Proc. pp41–48Google Scholar

    [47]

    Wan B N, Liang Y, Gong X Z, Xiang N, Xu G S, Sun Y, Wang L, Qian J P, Liu H Q, Zeng L, Zhang L, Zhang X J, the EAST team and Collaborators 2019 Nucl. Fusion 59 112003Google Scholar

    [48]

    Wan B N 2020 Chin. Phys. Lett. 37 045202Google Scholar

    [49]

    Hinton F, Hazeltine R D 1976 Rev. Mod. Phys. 48 239Google Scholar

    [50]

    Kikuchi M 1990 Nucl. Fusion 30 265Google Scholar

    [51]

    Fujita T, Ide S, Shirai H, Kikuchi M, Naito O, Koide Y, Takeji S, Kubo H, Ishida S 1997 Phys. Rev. Lett. 78 2377Google Scholar

    [52]

    Kikuchi M, Azumi M 2012 Rev. Mod. Phys. 84 1807Google Scholar

    [53]

    Turnbull A, Taylor T, Lin-Liu Y, John H S 1995 Phys. Rev. Lett. 74 718Google Scholar

    [54]

    Strait E, Lao L, Mauel M, Rice B, Taylor T, Burrell K, Chu M, Lazarus E, Osborne T, Thompson S 1995 Phys. Rev. Lett. 75 4421Google Scholar

    [55]

    Politzer P, Hyatt A, Luce T, Perkins F, Prater R, Turnbull A, Brennan D, Ferron J, Greenfield C, Jayakumar J 2005 Nucl. Fusion 45 417Google Scholar

    [56]

    Garofalo A, Doyle E, Ferron J, Greenfield C, Groebner R, Hyatt A, Jackson G, Jayakumar R, Kinsey J, La Haye R 2006 Phys. Plasmas 13 056110Google Scholar

    [57]

    Coda S, Sauter O, Henderson M, Goodman T 2008 Proceedings of the 22nd IAEA Fusion Energy Conference pEX/2-3

    [58]

    Beer M A, Hammett G, Rewoldt G, Synakowski E, Zarnstorff M, Dorland W 1997 Phys. Plasmas 4 1792Google Scholar

    [59]

    Eriksson L G, Fourment C, Fuchs V, Litaudon X, Challis C D, Crisanti F, Esposito B, Garbet X, Giroud C, Hawkes N, Maget P, Mazon D, Tresset G 2002 Phys. Rev. Lett. 88 145001Google Scholar

    [60]

    Bell R E, Levinton F M, Batha S H, Synakowski E J, Zarnstorff C M 1998 Phys. Rev. Lett. 81 1429Google Scholar

    [61]

    Burrell K 1997 Phys. Plasmas 4 1499Google Scholar

    [62]

    Diamond P H, Itoh S, Itoh K, Hahm T 2005 Plasma Phys. Control Fusion 47 R35Google Scholar

    [63]

    Diamond P, Lebedev V, Newman D, Carreras B, Hahm T, Tang W, Rewoldt G, Avinash K 1997 Phys. Rev. Lett. 78 1472Google Scholar

    [64]

    Lin Z, Hahm T S, Lee W, Tang W M, White R B 1998 Science 281 1835Google Scholar

    [65]

    Strait E, Taylor T, Turnbull A, Ferron J, Lao L, Rice B, Sauter O, Thompson S, Wróblewski D 1995 Phys. Rev. Lett. 74 2483Google Scholar

    [66]

    Reimerdes H, Garofalo A, Strait E, Buttery R, Chu M, In Y, Jackson G, La Haye R, Lanctot M, Liu Y 2009 Nucl. Fusion 49 115001Google Scholar

    [67]

    Chu M, Okabayashi M 2010 Plasma Phys. Control. Fusion 52 123001Google Scholar

    [68]

    Connor J, Fukuda T, Garbet X, Gormezano C, Mukhovatov V, Wakatani M 2004 Nucl. Fusion 44 R1Google Scholar

    [69]

    Li J, Guo H Y, Wan B N, Gong X Z, Liang Y F, Xu G S, Gan K F, Hu J S, Wang H Q, Wang L, Zhao Y P, Denner P, Jackson G L, Loarte A, Maingi R, Menard J E, Rack M, Zou X 2013 Nat. Phys. 9 817Google Scholar

    [70]

    Gruber O, Wolf R, Dux R, Fuchs C, Günter S, Kallenbach A, Lackner K, Maraschek M, McCarthy P, Meister H 1999 Phys. Rev. Lett. 83 1787Google Scholar

    [71]

    Luce T, Wade M, Politzer P, Allen S, Austin M, Baker D, Bray B, Brennan D, Burrell K, Casper T 2001 Nucl. Fusion 41 1585Google Scholar

    [72]

    Joffrin E, Wolf R, Alper B, Baranov Y, Challis C, de Baar M, Giroud C, Gowers C, Hawkes N, Hender T 2002 Plasma Phys. Control. Fusion 44 1203Google Scholar

    [73]

    Gao X, Zeng L, Wu M, Zhang T, Yang Y, Ming T, Zhu X, Wang Y, Liu H, Zang Q, Li G Q, Huang J, Gong X Z, Li Y Y, Li J G, Wan Y X, the EAST team 2020 Nucl. Fusion 60 102001Google Scholar

    [74]

    Petty C C, Kinsey J E, Holcomb C T, DeBoo J C, Doyle E J, Ferron J R, Garofalo A M, Hyatt A W, Jackson G L, Luce T C, Murakami M, Politzer P A, Reimerdes H 2016 Nucl. Fusion 56 016016Google Scholar

    [75]

    Hobirk J, Challis C, Kappatou A, Lerche E, Keeling D, King D, Aleiferis S, Alessi E, Angioni C, Auriemma F, JET Contributors 2023 Nucl. Fusion 63 112001Google Scholar

    [76]

    Siccinio M, Graves J, Kembleton R, Lux H, Maviglia F, Morris A, Morris J, Zohm H 2022 Fusion Eng. Des. 176 113047Google Scholar

    [77]

    Sun Y, Ma Q, Jia M, Gu S, Loarte A, Liang Y, Liu Y Q, Paz-Soldan C A, Wu X M, Xie P C, Ye C, Wang H H, Zhao J Q, Guo W, He K, Li Y. Y, Li G, Liu H, Qian J, Sheng H, Shi T, Wang Y M, Weisberg D, Wan B N, Zang Q, Zeng L, Zhang B, Zhang L, Zhang T, Zhou C, EAST Contributors 2021 Nucl. Fusion 61 106037Google Scholar

    [78]

    Burrell K, Austin M E, Brennan D, DeBoo J, Doyle E, Gohil P, Greenfield C, Groebner R, Lao L, Luce T 2002 Plasma Phys. Control. Fusion 44 A253Google Scholar

    [79]

    Whyte D, Hubbard A, Hughes J, Lipschultz B, Rice J, Marmar E, Greenwald M, Cziegler I, Dominguez A, Golfinopoulos T 2010 Nucl. Fusion 50 105005Google Scholar

    [80]

    Beurskens M, Schweinzer J, Angioni C, Burckhart A, Challis C, Chapman I, Fischer R, Flanagan J, Frassinetti L, Giroud C 2013 Plasma Phys. Control. Fusion 55 124043Google Scholar

    [81]

    Challis C D, Garcia J, Beurskens M, Buratti P, Delabie E, Drewelow P, Frassinetti L, Giroud C, Hawkes N, Hobirk J, Joffrin E, Keeling D, King D B, Maggi C F, Mailloux J, Marchetto C, McDonald D, Nunes I, Pucella G, Saarelma S, Simpson J, JET Contributors 2015 Nucl. Fusion 55 053031Google Scholar

    [82]

    Loarte A, Pitts R, Wauters T, Nunes I, Köchl F, Polevoi A, Kim S, Lehnen M, Schneider M, Zabeo L 2024 Initial evaluations in support of the new ITER Baseline and Research Plan, ITER Technical Report ITR-24-004, Report

    [83]

    Zhang Y N, He K Y, Sun Y W, Wan B N, Wu X M, Xie P C, Liu Y Q 2024 Nucl. Fusion 64 046012Google Scholar

    [84]

    Giruzzi G, Yoshida M, Aiba N, Artaud J, Ayllon-Guerola J, Beeke O, Bierwage A, Bolzonella T, Bonotto M, Boulbe C 2019 Plasma Phys. Control. Fusion 62 014009Google Scholar

    [85]

    Poli F M 2018 Phys. Plasmas 25 055602Google Scholar

    [86]

    Staebler G M, Knolker M, Snyder P, Angioni C, Fable E, Luda T, Bourdelle C, Garcia J, Citrin J, Marin M 2022 Nucl. Fusion 62 042005Google Scholar

    [87]

    Ye L, Xu Y, Xiao X, Dai Z, Wang S 2016 J. Comput. Phys. 316 180Google Scholar

    [88]

    Wang S J, Wang Z H, Wu T N 2024 Phys. Rev. Lett. 132 065106Google Scholar

    [89]

    Kolesnichenko Y I, Oraevskii V 1967 Soviet At. Energy 23 1028Google Scholar

    [90]

    Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [91]

    Fasoli A, Gormenzano C, Berk H, Breizman B, Briguglio S, Darrow D, Gorelenkov N, Heidbrink W, Jaun A, Konovalov S 2007 Nucl. Fusion 47 S264Google Scholar

    [92]

    Nazikian R, Fu G Y, Batha S H, Bell M G, Bell R E, Budny R V, Bush C E, Chang Z, Chen Y, Cheng C Z, Darrow D S, Efthimion P C, Fredrickson E D, Gorelenkov N N, Leblanc B, Levinton F M, Majeski R, Mazzucato E, Medley S S, Park H K, Petrov M P, Spong D A, Strachan J D, Synakowski E J, Taylor G, Von Goeler S, White R B, Wong K L, Zweben S J 1997 Phys. Rev. Lett. 78 2976Google Scholar

    [93]

    ITER EDA 1999 Nucl. Fusion 39 2471Google Scholar

    [94]

    Wei S Z, Wang T, Chen L, Zonca F, Qiu Z Y 2022 Nucl. Fusion 62 126038Google Scholar

    [95]

    Chen L, White R, Rosenbluth M 1984 Phys. Rev. Lett. 52 1122Google Scholar

    [96]

    McGuire K, Goldston R, Bell M, Bitter M, Bol K, Brau K, Buchenauer D, Crowley T, Davis S, Dylla F 1983 Phys. Rev. Lett. 50 891Google Scholar

    [97]

    Chen L, Hasegawa A 1974 Phys. Fluids 17 1399Google Scholar

    [98]

    Grad H 1969 Phys. Today 22 34Google Scholar

    [99]

    Cheng C, Chen L, Chance M 1985 Ann. Phys. 161 21Google Scholar

    [100]

    Tsai S T, Chen L 1993 Phys. Fluids B 5 3284Google Scholar

    [101]

    Chen L 1999 J. Geophys. Res. Space Phys. 104 2421Google Scholar

    [102]

    Chen L, Zonca F 2007 Nucl. Fusion 47 S727Google Scholar

    [103]

    Bao J, Zhang W L, Li D, Lin Z, Dong G, Liu C, Xie H S, Meng G, Cheng J Y, Dong C, Cao J T 2023 Nucl. Fusion 63 076021Google Scholar

    [104]

    Fu G, Van Dam J 1989 Phys. Fluids B 1 1949Google Scholar

    [105]

    Falessi M V, Chen L, Qiu Z Y, Zonca F 2023 New J. Phys. 25 123035Google Scholar

    [106]

    Wang T, Qiu Z Y, Zonca F, Briguglio S, Fogaccia G, Vlad G, Wang X 2018 Phys. Plasmas 25 062509Google Scholar

    [107]

    Wang T, Wang X, Briguglio S, Qiu Z Y, Vlad G, Zonca F 2019 Phys. Plasmas 26 012504Google Scholar

    [108]

    O'neil T, Malmberg J 1968 Phys. Fluids 11 1754Google Scholar

    [109]

    Berk H, Breizman B 1990 Phys. Fluids B 2 2235Google Scholar

    [110]

    Qiu Z Y, Chen L, Zonca F 2023 Rev. Mod. Plasma Phys. 7 28Google Scholar

    [111]

    Chen L, Zonca F 2012 Phys. Rev. Lett. 109 145002Google Scholar

    [112]

    Qiu Z Y, Chen L, Zonca F 2017 Nucl. Fusion 57 056017Google Scholar

    [113]

    Qiu Z Y, Chen L, Zonca F 2016 Nucl. Fusion 56 106013Google Scholar

    [114]

    Qiu Z Y, Chen L, Zonca F, Chen W 2019 Nucl. Fusion 59 066031Google Scholar

    [115]

    Spong D, Carreras B, Hedrick C 1994 Phys. Plasmas 1 1503Google Scholar

    [116]

    Hahm T, Chen L 1995 Phys. Rev. Lett. 74 266Google Scholar

    [117]

    Qiu Z Y, Chen L, Zonca F 2019 Nucl. Fusion 59 066024Google Scholar

    [118]

    Chen L, Qiu Z Y, Zonca F 2023 Nucl. Fusion 63 106016Google Scholar

    [119]

    Chen L, Qiu Z Y, Zonca F 2022 Nucl. Fusion 62 094001Google Scholar

    [120]

    Qiu Z Y, Chen L, Zonca F, Chen W 2018 Phys. Rev. Lett. 120 135001Google Scholar

    [121]

    Lang J, Fu G 2011 Phys. Plasmas 18 055902Google Scholar

    [122]

    Di Siena A, Görler T, Poli E, Navarro A B, Biancalani A, Jenko F 2019 Nucl. Fusion 59 124001Google Scholar

    [123]

    Mazzi S, Garcia J, Zarzoso D, Kazakov Y O, Ongena J, Dreval M, Nocente M, Štancar Ž, Szepesi G, Eriksson J, Sahlberg A, Benkadda S, JET Contributors 2022 Nat. Phys. 18 776Google Scholar

    [124]

    Zhang W L, Lin Z H, Chen L 2008 Phys. Rev. Lett. 101 095001Google Scholar

    [125]

    Garcia J, Challis C, Citrin J, Doerk H, Giruzzi G, Görler T, Jenko F, Maget P, Contributors J 2015 Nucl. Fusion 55 053007Google Scholar

    [126]

    Han H, Park S J, Sung C, Kang J, Lee Y H, Chung J, Hahm T S, Kim B, Park J K, Bak J G, Cha M S, Choi G J, Choi M J, Gwak J, Hahn S H, Jang J, Lee K C, Kim J H, Kim S K, Kim W C, Ko J, Ko W H, Lee C Y, Lee J H, Lee J H, Lee J K, Lee J P, Lee K D, Park Y S, Seo J, Yang S M, Yoon S W, Na Y S 2022 Nature 609 269Google Scholar

    [127]

    Citrin J, Garcia J, Görler T, Jenko F, Mantica P, Told D, Bourdelle C, Hatch D, Hogeweij G, Johnson T 2014 Plasma Phys. Control. Fusion 57 014032Google Scholar

    [128]

    Hasegawa A, Chen L 1976 Phys. Fluids 19 1924Google Scholar

    [129]

    Duan X R, Xu M, Zhong W L, Liu Y, Song X M, Liu D Q, Wang Y Q, Lu B, Shi Z B, Zheng G Y, HL-2A/HL-2M Team 2022 Nucl. Fusion 62 042020Google Scholar

  • 图 A1  托卡马克装置磁位型

    Figure A1.  Magnetic field configuration of a tokamak.

    图 1  托卡马克聚变堆运行的归一化参数区($q_{95}^{-1},\beta_{\rm N} $)示意图, 其中不同曲线代表一个理想的聚变堆需要满足的不同等离子体物理限制条件的示意分布, 如最低聚变功率需求(蓝色曲线), 稳定性极限限制(红色曲线), 最低聚变增益因子需求限制(绿色曲线)和高能量粒子约束限制(紫色曲线), 以及其他一些限制条件(灰色虚线)等

    Figure 1.  A schematic plot of operational window of a tokamak fusion reactor in terms of normalized parameters ($q_{95}^{-1},\beta_{\rm N}$). Different constraints from plasma physics for a fusion reactor, e.g. threshold fusion power (blue curve), stability limit (red curve), threshold fusion gain (green curve), limits from a particle confinement (purple curve), and some other constraints (gray dashed curves) etc.

    图 2  感应(红色)、混合(绿色)和稳态(蓝色)运行方案的q分布(实线)和压力分布(虚线)示意图

    Figure 2.  A schematic plot of q (solid lines) and pressure (dashed lines) profiles for inductive (red), hybrid (green) and steady state (blue) scenarios.

    图 3  ITER混合运行模式下阿尔芬连续谱和不稳定性示意图, 其中, 横坐标是归一化的径向位置, 纵坐标是频率, 虚线为安全因子分布, EPM表示高能量粒子模, TAE表示环阿尔芬本征模, EAE表示椭圆形变诱发阿尔芬本征模, NAE表示三角形变诱发阿尔芬本征模, 此处取环向模数n = 10

    Figure 3.  A schematic plot of shear Alfvén wave continuous spectrum and associated instabilities of ITER hybrid scenario is presented. Here, the horizontal axis represents the normalized minor radius, and the vertical axis is the normalized frequency. The dashed curve corresponds to the q-profile, and a representative toroidal mode number n = 10 is adopted. The frequencies and mode localizations of energetic particle mode (EPM), toroidal Alfvén eigenmode (TAE), ellipticity induced Alfvén eigenmode (EAE) and non-circularity induced Alfvén eigenmode (NAE) are also given.

  • [1]

    Ongena J, Koch R, Wolf R, Zohm H 2016 Nat. Phys. 12 398Google Scholar

    [2]

    Wan B N, Xu G S 2023 Natl. Sci. Rev. 10 nwad217Google Scholar

    [3]

    Artsimovich L 1972 Nucl. Fusion 12 215Google Scholar

    [4]

    Wurzel S E, Hsu S C 2022 Phys. Plasmas 29 062103Google Scholar

    [5]

    Keilhacker M, Gibson A, Gormezano C, Lomas P, Thomas P, Watkins M, Andrew P, Balet B, Borba D, Challis C 1999 Nucl. Fusion 39 209Google Scholar

    [6]

    Hawryluk R 1998 Rev. Mod. Phys. 70 537Google Scholar

    [7]

    ITER-team 2001 ITER EDA Documentation Series No. 22: Summary of the ITER Final Design Report Report

    [8]

    EUROfusion 2018 European Research Roadmap to the Realisation LONG VERSION of Fusion Energy Report

    [9]

    National Academies of Sciences and Engineering and Medicine 2021 Bringing Fusion to the US Grid (Washington: The National Academies Press

    [10]

    Department for Energy Security & Net Zero 2023 Towards Fusion Energy 2023 - The Next Stage of the UK’s Fusion Energy Strategy Report

    [11]

    Hsu S C 2023 J. Fusion Energy 42 12Google Scholar

    [12]

    ITER-Organization 2018 ITER Research Plan within the Staged Approach (Level III - Provisional Version), ITER Technical Report ITR18003, Report

    [13]

    Wesson J, Campbell D J 2011 Tokamaks (Vol. 149) (Oxford University Press

    [14]

    Troyon F, Gruber R, Saurenmann H, Semenzato S, Succi S 1984 Plasma Phys. Control. Fusion 26 209Google Scholar

    [15]

    Strait E 1994 Phys. Plasmas 1 1415Google Scholar

    [16]

    ITER Physics Expert Group on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database, ITER Physics Basis Editors 1999 Nucl. Fusion 39 2175Google Scholar

    [17]

    Heidbrink W 2008 Phys. Plasmas 15 055501Google Scholar

    [18]

    Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27Google Scholar

    [19]

    Gormezano C, Sips A, Luce T, Ide S, Becoulet A, Litaudon X, Isayama A, Hobirk J, Wade M, Oikawa T 2007 Nucl. Fusion 47 S285Google Scholar

    [20]

    Fujita T, Ide S, Kamada Y, Suzuki T, Oikawa T, Takeji S, Sakamoto Y, Koide Y, Isayama A, Hatae T 2001 Phys. Rev. Lett. 87 085001Google Scholar

    [21]

    Loarte A, Lipschultz B, Kukushkin A 2007 Nucl. Fusion 47 S203Google Scholar

    [22]

    Eich T, Leonard A, Pitts R, Fundamenski W, Goldston R J, Gray T, Herrmann A, Kirk A, Kallenbach A, Kardaun O 2013 Nucl. Fusion 53 093031Google Scholar

    [23]

    Sips A, Giruzzi G, Ide S, Kessel C, Luce T, Snipes J, Stober J 2015 Phys. Plasmas 22 021804Google Scholar

    [24]

    Wagner F, Becker G, Behringer K, Campbell D, Eberhagen A, Engelhardt W, Fussmann G, Gehre O, Gernhardt J, Gierke G v 1982 Phys. Rev. Lett. 49 1408Google Scholar

    [25]

    Shaing K C, Crume Jr E 1989 Phys. Rev. Lett. 63 2369Google Scholar

    [26]

    Diamond P H, Liang Y M, Carreras B A, Terry P W 1994 Phys. Rev. Lett. 72 2565Google Scholar

    [27]

    Doyle E, Houlberg W, Kamada Y, Mukhovatov V, Osborne T, Polevoi A, Bateman G, Connor J, Cordey J, Fujita T 2007 Nucl. Fusion 47 S18Google Scholar

    [28]

    Creely A, Brunner D, Mumgaard R, Reinke M, Segal M, Sorbom B, Greenwald M 2023 Phys. Plasmas 30 090601Google Scholar

    [29]

    Chang Z, Callen J D, Fredrickson E D, Budny R V, Hegna C C, McGuire K M, Zarnstorff M C, TFTR Group 1995 Phys. Rev. Lett. 74 4663Google Scholar

    [30]

    Hender T, Wesley J, Bialek J, Bondeson A, Boozer A, Buttery R, Garofalo A, Goodman T, Granetz R, Gribov Y 2007 Nucl. Fusion 47 S128Google Scholar

    [31]

    Solomon W, Politzer P, Buttery R, Holcomb C, Ferron J, Garofalo A, Grierson B, Hanson J, In Y, Jackson G 2013 Nucl. Fusion 53 093033Google Scholar

    [32]

    Porcelli F, Boucher D, Rosenbluth M 1996 Plasma Phys. Control. Fusion 38 2163Google Scholar

    [33]

    De Vries P, Johnson M, Alper B, Buratti P, Hender T, Koslowski H, Riccardo V, Contributors J E 2011 Nucl. Fusion 51 053018Google Scholar

    [34]

    La Haye R 2006 Phys. Plasmas 13 055501Google Scholar

    [35]

    Poli F M, Fredrickson E, Henderson M A, Kim S-H, Bertelli N, Poli E, Farina D, Figini L 2018 Nucl. Fusion 58 016007Google Scholar

    [36]

    Wang X G, Zhang X D, Yu Q Q, Wu B, Zhu S Z, Wang J F, Zhang Y, Wang X J 2015 Nucl. Fusion 55 093024Google Scholar

    [37]

    Reiman A, Fisch N 2018 Phys. Rev. Lett. 121 225001Google Scholar

    [38]

    Liu T, Wang Z X, Wei L, Wang J L, Reiman A 2024 Nucl. Fusion 64 036001Google Scholar

    [39]

    Zohm H 1996 Plasma Phys. Control. Fusion 38 105Google Scholar

    [40]

    Loarte A, Saibene G, Sartori R, Campbell D, Becoulet M, Horton L, Eich T, Herrmann A, Matthews G, Asakura N 2003 Plasma Phys. Control. Fusion 45 1549Google Scholar

    [41]

    Evans T, Moyer R, Thomas P, Watkins J, Osborne T, Boedo J, Doyle E, Fenstermacher M, Finken K, Groebner R 2004 Phys. Rev. Lett. 92 235003Google Scholar

    [42]

    Sun Y W, Liang Y, Liu Y, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H H, Zhang T, Qian J, Xu L, He K, Chen D, Shen B, Gong X, Ji X, Wang S, Qi M, Song Y, Yuan Q, Sheng Z, Gao G, Fu P, Wan B N 2016 Phys. Rev. Lett. 117 115001Google Scholar

    [43]

    Liang Y, Koslowski H, Thomas P, Nardon E, Alper B, Andrew P, Andrew Y, Arnoux G, Baranov Y, Bécoulet M 2007 Phys. Rev. Lett. 98 265004Google Scholar

    [44]

    Hawryluk R, Campbell D, Janeschitz G, Thomas P, Albanese R, Ambrosino R, Bachmann C, Baylor L, Becoulet M, Benfatto I 2009 Nucl. Fusion 49 065012Google Scholar

    [45]

    Murakami M, Greenfield C, Wade M, Luce T, Ferron J, St John H, Makowski M, Austin M, Allen S, Brennan D 2005 Nucl. Fusion 45 1419Google Scholar

    [46]

    Goniche M, Dumont R, Bourdelle C, Decker J, Delpech L, Ekedahl A, Guilhem D, Litaudon X, Lotte P, Maget P 2014 AIP Conf. Proc. pp41–48Google Scholar

    [47]

    Wan B N, Liang Y, Gong X Z, Xiang N, Xu G S, Sun Y, Wang L, Qian J P, Liu H Q, Zeng L, Zhang L, Zhang X J, the EAST team and Collaborators 2019 Nucl. Fusion 59 112003Google Scholar

    [48]

    Wan B N 2020 Chin. Phys. Lett. 37 045202Google Scholar

    [49]

    Hinton F, Hazeltine R D 1976 Rev. Mod. Phys. 48 239Google Scholar

    [50]

    Kikuchi M 1990 Nucl. Fusion 30 265Google Scholar

    [51]

    Fujita T, Ide S, Shirai H, Kikuchi M, Naito O, Koide Y, Takeji S, Kubo H, Ishida S 1997 Phys. Rev. Lett. 78 2377Google Scholar

    [52]

    Kikuchi M, Azumi M 2012 Rev. Mod. Phys. 84 1807Google Scholar

    [53]

    Turnbull A, Taylor T, Lin-Liu Y, John H S 1995 Phys. Rev. Lett. 74 718Google Scholar

    [54]

    Strait E, Lao L, Mauel M, Rice B, Taylor T, Burrell K, Chu M, Lazarus E, Osborne T, Thompson S 1995 Phys. Rev. Lett. 75 4421Google Scholar

    [55]

    Politzer P, Hyatt A, Luce T, Perkins F, Prater R, Turnbull A, Brennan D, Ferron J, Greenfield C, Jayakumar J 2005 Nucl. Fusion 45 417Google Scholar

    [56]

    Garofalo A, Doyle E, Ferron J, Greenfield C, Groebner R, Hyatt A, Jackson G, Jayakumar R, Kinsey J, La Haye R 2006 Phys. Plasmas 13 056110Google Scholar

    [57]

    Coda S, Sauter O, Henderson M, Goodman T 2008 Proceedings of the 22nd IAEA Fusion Energy Conference pEX/2-3

    [58]

    Beer M A, Hammett G, Rewoldt G, Synakowski E, Zarnstorff M, Dorland W 1997 Phys. Plasmas 4 1792Google Scholar

    [59]

    Eriksson L G, Fourment C, Fuchs V, Litaudon X, Challis C D, Crisanti F, Esposito B, Garbet X, Giroud C, Hawkes N, Maget P, Mazon D, Tresset G 2002 Phys. Rev. Lett. 88 145001Google Scholar

    [60]

    Bell R E, Levinton F M, Batha S H, Synakowski E J, Zarnstorff C M 1998 Phys. Rev. Lett. 81 1429Google Scholar

    [61]

    Burrell K 1997 Phys. Plasmas 4 1499Google Scholar

    [62]

    Diamond P H, Itoh S, Itoh K, Hahm T 2005 Plasma Phys. Control Fusion 47 R35Google Scholar

    [63]

    Diamond P, Lebedev V, Newman D, Carreras B, Hahm T, Tang W, Rewoldt G, Avinash K 1997 Phys. Rev. Lett. 78 1472Google Scholar

    [64]

    Lin Z, Hahm T S, Lee W, Tang W M, White R B 1998 Science 281 1835Google Scholar

    [65]

    Strait E, Taylor T, Turnbull A, Ferron J, Lao L, Rice B, Sauter O, Thompson S, Wróblewski D 1995 Phys. Rev. Lett. 74 2483Google Scholar

    [66]

    Reimerdes H, Garofalo A, Strait E, Buttery R, Chu M, In Y, Jackson G, La Haye R, Lanctot M, Liu Y 2009 Nucl. Fusion 49 115001Google Scholar

    [67]

    Chu M, Okabayashi M 2010 Plasma Phys. Control. Fusion 52 123001Google Scholar

    [68]

    Connor J, Fukuda T, Garbet X, Gormezano C, Mukhovatov V, Wakatani M 2004 Nucl. Fusion 44 R1Google Scholar

    [69]

    Li J, Guo H Y, Wan B N, Gong X Z, Liang Y F, Xu G S, Gan K F, Hu J S, Wang H Q, Wang L, Zhao Y P, Denner P, Jackson G L, Loarte A, Maingi R, Menard J E, Rack M, Zou X 2013 Nat. Phys. 9 817Google Scholar

    [70]

    Gruber O, Wolf R, Dux R, Fuchs C, Günter S, Kallenbach A, Lackner K, Maraschek M, McCarthy P, Meister H 1999 Phys. Rev. Lett. 83 1787Google Scholar

    [71]

    Luce T, Wade M, Politzer P, Allen S, Austin M, Baker D, Bray B, Brennan D, Burrell K, Casper T 2001 Nucl. Fusion 41 1585Google Scholar

    [72]

    Joffrin E, Wolf R, Alper B, Baranov Y, Challis C, de Baar M, Giroud C, Gowers C, Hawkes N, Hender T 2002 Plasma Phys. Control. Fusion 44 1203Google Scholar

    [73]

    Gao X, Zeng L, Wu M, Zhang T, Yang Y, Ming T, Zhu X, Wang Y, Liu H, Zang Q, Li G Q, Huang J, Gong X Z, Li Y Y, Li J G, Wan Y X, the EAST team 2020 Nucl. Fusion 60 102001Google Scholar

    [74]

    Petty C C, Kinsey J E, Holcomb C T, DeBoo J C, Doyle E J, Ferron J R, Garofalo A M, Hyatt A W, Jackson G L, Luce T C, Murakami M, Politzer P A, Reimerdes H 2016 Nucl. Fusion 56 016016Google Scholar

    [75]

    Hobirk J, Challis C, Kappatou A, Lerche E, Keeling D, King D, Aleiferis S, Alessi E, Angioni C, Auriemma F, JET Contributors 2023 Nucl. Fusion 63 112001Google Scholar

    [76]

    Siccinio M, Graves J, Kembleton R, Lux H, Maviglia F, Morris A, Morris J, Zohm H 2022 Fusion Eng. Des. 176 113047Google Scholar

    [77]

    Sun Y, Ma Q, Jia M, Gu S, Loarte A, Liang Y, Liu Y Q, Paz-Soldan C A, Wu X M, Xie P C, Ye C, Wang H H, Zhao J Q, Guo W, He K, Li Y. Y, Li G, Liu H, Qian J, Sheng H, Shi T, Wang Y M, Weisberg D, Wan B N, Zang Q, Zeng L, Zhang B, Zhang L, Zhang T, Zhou C, EAST Contributors 2021 Nucl. Fusion 61 106037Google Scholar

    [78]

    Burrell K, Austin M E, Brennan D, DeBoo J, Doyle E, Gohil P, Greenfield C, Groebner R, Lao L, Luce T 2002 Plasma Phys. Control. Fusion 44 A253Google Scholar

    [79]

    Whyte D, Hubbard A, Hughes J, Lipschultz B, Rice J, Marmar E, Greenwald M, Cziegler I, Dominguez A, Golfinopoulos T 2010 Nucl. Fusion 50 105005Google Scholar

    [80]

    Beurskens M, Schweinzer J, Angioni C, Burckhart A, Challis C, Chapman I, Fischer R, Flanagan J, Frassinetti L, Giroud C 2013 Plasma Phys. Control. Fusion 55 124043Google Scholar

    [81]

    Challis C D, Garcia J, Beurskens M, Buratti P, Delabie E, Drewelow P, Frassinetti L, Giroud C, Hawkes N, Hobirk J, Joffrin E, Keeling D, King D B, Maggi C F, Mailloux J, Marchetto C, McDonald D, Nunes I, Pucella G, Saarelma S, Simpson J, JET Contributors 2015 Nucl. Fusion 55 053031Google Scholar

    [82]

    Loarte A, Pitts R, Wauters T, Nunes I, Köchl F, Polevoi A, Kim S, Lehnen M, Schneider M, Zabeo L 2024 Initial evaluations in support of the new ITER Baseline and Research Plan, ITER Technical Report ITR-24-004, Report

    [83]

    Zhang Y N, He K Y, Sun Y W, Wan B N, Wu X M, Xie P C, Liu Y Q 2024 Nucl. Fusion 64 046012Google Scholar

    [84]

    Giruzzi G, Yoshida M, Aiba N, Artaud J, Ayllon-Guerola J, Beeke O, Bierwage A, Bolzonella T, Bonotto M, Boulbe C 2019 Plasma Phys. Control. Fusion 62 014009Google Scholar

    [85]

    Poli F M 2018 Phys. Plasmas 25 055602Google Scholar

    [86]

    Staebler G M, Knolker M, Snyder P, Angioni C, Fable E, Luda T, Bourdelle C, Garcia J, Citrin J, Marin M 2022 Nucl. Fusion 62 042005Google Scholar

    [87]

    Ye L, Xu Y, Xiao X, Dai Z, Wang S 2016 J. Comput. Phys. 316 180Google Scholar

    [88]

    Wang S J, Wang Z H, Wu T N 2024 Phys. Rev. Lett. 132 065106Google Scholar

    [89]

    Kolesnichenko Y I, Oraevskii V 1967 Soviet At. Energy 23 1028Google Scholar

    [90]

    Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [91]

    Fasoli A, Gormenzano C, Berk H, Breizman B, Briguglio S, Darrow D, Gorelenkov N, Heidbrink W, Jaun A, Konovalov S 2007 Nucl. Fusion 47 S264Google Scholar

    [92]

    Nazikian R, Fu G Y, Batha S H, Bell M G, Bell R E, Budny R V, Bush C E, Chang Z, Chen Y, Cheng C Z, Darrow D S, Efthimion P C, Fredrickson E D, Gorelenkov N N, Leblanc B, Levinton F M, Majeski R, Mazzucato E, Medley S S, Park H K, Petrov M P, Spong D A, Strachan J D, Synakowski E J, Taylor G, Von Goeler S, White R B, Wong K L, Zweben S J 1997 Phys. Rev. Lett. 78 2976Google Scholar

    [93]

    ITER EDA 1999 Nucl. Fusion 39 2471Google Scholar

    [94]

    Wei S Z, Wang T, Chen L, Zonca F, Qiu Z Y 2022 Nucl. Fusion 62 126038Google Scholar

    [95]

    Chen L, White R, Rosenbluth M 1984 Phys. Rev. Lett. 52 1122Google Scholar

    [96]

    McGuire K, Goldston R, Bell M, Bitter M, Bol K, Brau K, Buchenauer D, Crowley T, Davis S, Dylla F 1983 Phys. Rev. Lett. 50 891Google Scholar

    [97]

    Chen L, Hasegawa A 1974 Phys. Fluids 17 1399Google Scholar

    [98]

    Grad H 1969 Phys. Today 22 34Google Scholar

    [99]

    Cheng C, Chen L, Chance M 1985 Ann. Phys. 161 21Google Scholar

    [100]

    Tsai S T, Chen L 1993 Phys. Fluids B 5 3284Google Scholar

    [101]

    Chen L 1999 J. Geophys. Res. Space Phys. 104 2421Google Scholar

    [102]

    Chen L, Zonca F 2007 Nucl. Fusion 47 S727Google Scholar

    [103]

    Bao J, Zhang W L, Li D, Lin Z, Dong G, Liu C, Xie H S, Meng G, Cheng J Y, Dong C, Cao J T 2023 Nucl. Fusion 63 076021Google Scholar

    [104]

    Fu G, Van Dam J 1989 Phys. Fluids B 1 1949Google Scholar

    [105]

    Falessi M V, Chen L, Qiu Z Y, Zonca F 2023 New J. Phys. 25 123035Google Scholar

    [106]

    Wang T, Qiu Z Y, Zonca F, Briguglio S, Fogaccia G, Vlad G, Wang X 2018 Phys. Plasmas 25 062509Google Scholar

    [107]

    Wang T, Wang X, Briguglio S, Qiu Z Y, Vlad G, Zonca F 2019 Phys. Plasmas 26 012504Google Scholar

    [108]

    O'neil T, Malmberg J 1968 Phys. Fluids 11 1754Google Scholar

    [109]

    Berk H, Breizman B 1990 Phys. Fluids B 2 2235Google Scholar

    [110]

    Qiu Z Y, Chen L, Zonca F 2023 Rev. Mod. Plasma Phys. 7 28Google Scholar

    [111]

    Chen L, Zonca F 2012 Phys. Rev. Lett. 109 145002Google Scholar

    [112]

    Qiu Z Y, Chen L, Zonca F 2017 Nucl. Fusion 57 056017Google Scholar

    [113]

    Qiu Z Y, Chen L, Zonca F 2016 Nucl. Fusion 56 106013Google Scholar

    [114]

    Qiu Z Y, Chen L, Zonca F, Chen W 2019 Nucl. Fusion 59 066031Google Scholar

    [115]

    Spong D, Carreras B, Hedrick C 1994 Phys. Plasmas 1 1503Google Scholar

    [116]

    Hahm T, Chen L 1995 Phys. Rev. Lett. 74 266Google Scholar

    [117]

    Qiu Z Y, Chen L, Zonca F 2019 Nucl. Fusion 59 066024Google Scholar

    [118]

    Chen L, Qiu Z Y, Zonca F 2023 Nucl. Fusion 63 106016Google Scholar

    [119]

    Chen L, Qiu Z Y, Zonca F 2022 Nucl. Fusion 62 094001Google Scholar

    [120]

    Qiu Z Y, Chen L, Zonca F, Chen W 2018 Phys. Rev. Lett. 120 135001Google Scholar

    [121]

    Lang J, Fu G 2011 Phys. Plasmas 18 055902Google Scholar

    [122]

    Di Siena A, Görler T, Poli E, Navarro A B, Biancalani A, Jenko F 2019 Nucl. Fusion 59 124001Google Scholar

    [123]

    Mazzi S, Garcia J, Zarzoso D, Kazakov Y O, Ongena J, Dreval M, Nocente M, Štancar Ž, Szepesi G, Eriksson J, Sahlberg A, Benkadda S, JET Contributors 2022 Nat. Phys. 18 776Google Scholar

    [124]

    Zhang W L, Lin Z H, Chen L 2008 Phys. Rev. Lett. 101 095001Google Scholar

    [125]

    Garcia J, Challis C, Citrin J, Doerk H, Giruzzi G, Görler T, Jenko F, Maget P, Contributors J 2015 Nucl. Fusion 55 053007Google Scholar

    [126]

    Han H, Park S J, Sung C, Kang J, Lee Y H, Chung J, Hahm T S, Kim B, Park J K, Bak J G, Cha M S, Choi G J, Choi M J, Gwak J, Hahn S H, Jang J, Lee K C, Kim J H, Kim S K, Kim W C, Ko J, Ko W H, Lee C Y, Lee J H, Lee J H, Lee J K, Lee J P, Lee K D, Park Y S, Seo J, Yang S M, Yoon S W, Na Y S 2022 Nature 609 269Google Scholar

    [127]

    Citrin J, Garcia J, Görler T, Jenko F, Mantica P, Told D, Bourdelle C, Hatch D, Hogeweij G, Johnson T 2014 Plasma Phys. Control. Fusion 57 014032Google Scholar

    [128]

    Hasegawa A, Chen L 1976 Phys. Fluids 19 1924Google Scholar

    [129]

    Duan X R, Xu M, Zhong W L, Liu Y, Song X M, Liu D Q, Wang Y Q, Lu B, Shi Z B, Zheng G Y, HL-2A/HL-2M Team 2022 Nucl. Fusion 62 042020Google Scholar

  • [1] Jin Yi-Fei, Zhang Hong-Ming, Yin Xiang-Hui, Lyu Bo, Cheonho Bae, Ye Kai-Xuan, Sheng Hui, Wang Shi-Fan, Zhao Hai-Lin, Gu Shuai, Yuan Hong, Lin Zi-Chao, Fu Sheng-Yu, Lu Di-An, Fu Jia, Wang Fu-Di. Experimental investigations on physical mechanisms of RMP-induced intrinsic rotations at EAST. Acta Physica Sinica, 2024, 73(24): 1-11. doi: 10.7498/aps.73.20241357
    [2] Zhang Qi-Fan, Le Wen-Cheng, Zhang Yu-Hao, Ge Zhong-Xin, Kuang Zhi-Qiang, Xiao Sheng-Yang, Wang Lu. Effects of radiation from tungsten impurities on the thermal energy loss during the fast thermal quench stage of major disruption in tokamak plasmas. Acta Physica Sinica, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [3] Liu Guan-Nan, LI Xin-Xia, Liu Hong-Bo, Sun Ai-Ping. Synergistic current drive of helicon wave and lower hybrid wave in HL-2M. Acta Physica Sinica, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [4] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [5] Hao Bao-Long, Li Ying-Ying, Chen Wei, Hao Guang-Zhou, Gu Xiang, Sun Tian-Tian, Wang Yu-Min, Dong Jia-Qi, Yuan Bao-Shan, Peng Yuan-Kai, Shi Yue-Jiang, Xie Hua-Sheng, Liu Min-Sheng, ENN TEAM. Optimizing numerical simulation of beam ion loss due to toroidal field ripple on EXL-50U spherical torus. Acta Physica Sinica, 2023, 72(21): 215215. doi: 10.7498/aps.72.20230749
    [6] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [7] Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu. Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak. Acta Physica Sinica, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [8] Chen Xie-Yu, Mou Mao-Lin, Su Chun-Yan, Chen Shao-Yong, Tang Chang-Jian. Effect of toroidal rotation on plasma response to resonant magnetic perturbations in HL-2A. Acta Physica Sinica, 2020, 69(19): 195201. doi: 10.7498/aps.69.20200519
    [9] Zhang Chong-Yang, Liu A-Di, Li Hong, Chen Zhi-Peng, Li Bin, Yang Zhou-Jun, Zhou Chu, Xie Jin-Lin, Lan Tao, Liu Wan-Dong, Zhuang Ge, Yu Chang-Xuan. Application of dual-polarization frequency-modulated microwave reflectometer to J-TEXT tokamak. Acta Physica Sinica, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [10] Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen. Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0. Acta Physica Sinica, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [11] Lu Hong-Wei, Zha Xue-Jun, Hu Li-Qun, Lin Shi-Yao, Zhou Rui-Jie, Luo Jia-Rong, Zhong Fang-Chuan. The effect of gas puffing on plasma during slide-away discharge in the HT-7 tokamak. Acta Physica Sinica, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [12] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [13] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [14] Zhong Guo-Qiang, Hu Li-Qun, Zhu Yu-Bao, Lin Shi-Yao, Chen Jue-Quan, Xu Ping, Duan Yan-Min, Lu Hong-Wei. Neutron flux measurement and analysis in the HT-7 deuterium plasma. Acta Physica Sinica, 2009, 58(5): 3262-3267. doi: 10.7498/aps.58.3262
    [15] Xu Qiang, Gao Xiang, Shan Jia-Fang, Hu Li-Qun, Zhao Jun-Yu. Experimental study of large power lower hybrid current drive on HT-7 tokamak. Acta Physica Sinica, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [16] Huang Qin-Chao, Luo Jia-Rong, Wang Hua-Zhong, Li Chong. Quick identification of EAST plasma discharge shape. Acta Physica Sinica, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [17] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [18] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [19] WANG WEN-HAO, YU CHANG-XUAN, XU YU-HONG, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. MEASUREMENT OF EDGE PLASMA PARAMETERS AND THEIR ELECTROSTATIC FLUCTUATIONS ON THE HT-7 SUPERCONDUCTING TOKAMAK. Acta Physica Sinica, 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [20] ZHANG XIAN-MEI, WAN BAO-NIAN, RUAN HUAI-LIN, WU ZHEN-WEI. STUDY OF THE ELECTRON THERMAL CONDUCTIVITY OF THE OHMICALLY HEATED DISCHARGES IN THE HT-7 TOKAMAK. Acta Physica Sinica, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
Metrics
  • Abstract views:  1871
  • PDF Downloads:  189
  • Cited By: 0
Publishing process
  • Received Date:  14 June 2024
  • Accepted Date:  05 August 2024
  • Available Online:  19 August 2024
  • Published Online:  05 September 2024

/

返回文章
返回