Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Self-assembled biomolecular soft materials and their physical properties

Han Xu Xue Bin Cao Yi Wang Wei

Citation:

Self-assembled biomolecular soft materials and their physical properties

Han Xu, Xue Bin, Cao Yi, Wang Wei
PDF
HTML
Get Citation
  • Self-assembling biomolecular soft materials are a novel type of soft matter formed through the self-assembly process by using biomolecules or biomolecular building blocks. The characteristics of bio-sourced origin and assembly driven by weak interactions endow these materials with advantages such as high biocompatibility, reversible assembly, dynamic responsiveness, and controllable microstructures. These properties offer immense potential for development in fields such as biomedicine, tissue engineering, and flexible sensing. This paper concisely reviews the fundamental construction principles of self-assembling biomolecular soft materials and discusses three categories, i.e. nanomaterials, gel materials, and composite materials, by using amino acids and peptides as examples of assembly units. The specific self-assembly molecular mechanisms, material construction strategies, and functional application scenarios of these materials are elucidated. We anticipate that the research on self-assembling soft matter biomolecular materials will evolve from exploring structural units and measuring properties to customizing multifunctional properties and integrating advanced applications. This will lead to the development of novel composite intelligent biomolecular soft matter materials, and further promoting their applications in biomedicine, organic semiconductors, and soft robotics.
      Corresponding author: Wang Wei, wangwei@nju.edu.cn
    • Funds: Project supported by the the National Natural Science Foundation of China (Grant Nos. 11934008, T2225016, T2322010) and the National Key Research and Development Program of China (Grant No. 2020YFA0908100).
    [1]

    Weitz D A 2022 Nat. Mater. 21 986Google Scholar

    [2]

    Grzelczak M, Vermant J, Furst E M, Liz-Marzán L M 2010 ACS Nano 4 3591Google Scholar

    [3]

    He M, Gales J P, Ducrot É, Gong Z, Yi G-R, Sacanna S, Pine D J 2020 Nature 585 524Google Scholar

    [4]

    Kim Y J, Moon J B, Hwang H, Kim Y S, Yi G R 2023 Adv. Mater. 35 2203045Google Scholar

    [5]

    Díaz-Villanueva J F, Díaz-Molina R, García-González V 2015 Int. J. Mol. Sci. 16 17193Google Scholar

    [6]

    Shin Y, Brangwynne C P 2017 Science 357 eaaf4382Google Scholar

    [7]

    Soukasene S, Toft D J, Moyer T J, Lu H, Lee H K, Standley S M, Cryns V L, Stupp S I 2011 ACS Nano 5 9113Google Scholar

    [8]

    Abbas M, Zou Q, Li S, Yan X 2017 Adv. Mater. 29 1605021Google Scholar

    [9]

    Webber M J, Han X, Prasanna Murthy S N, Rajangam K, Stupp S I, Lomasney J W 2010 J. Tissue Eng. Regenerative Med. 4 600Google Scholar

    [10]

    Gu Z, Wang J, Fu Y, Pan H, He H, Gan Q, Liu C 2023 Adv. Funct. Mater. 33 2212561Google Scholar

    [11]

    Du X, Zhou J, Guvench O, Sangiorgi F O, Li X, Zhou N, Xu B 2014 Bioconjugate Chem. 25 1031Google Scholar

    [12]

    Webber M J, Tongers J, Renault M A, Roncalli J G, Losordo D W, Stupp S I 2010 Acta Biomater. 6 3Google Scholar

    [13]

    Webber M J, Appel E A, Meijer E W, Langer R 2016 Nat. Mater. 15 13Google Scholar

    [14]

    Levin A, Hakala T A, Schnaider L, Bernardes G J L, Gazit E, Knowles T P J 2020 Nat. Rev. Chem. 4 615Google Scholar

    [15]

    Parsons J T, Horwitz A R, Schwartz M A 2010 Nat. Rev. Mol. Cell Biol. 11 633Google Scholar

    [16]

    Theocharis A D, Skandalis S S, Gialeli C, Karamanos N K 2016 Adv. Drug Delivery Rev. 97 4Google Scholar

    [17]

    Hayes J D, Flanagan J U, Jowsey I R 2005 Ann. Rev. Pharmacol. Toxicol. 45 51Google Scholar

    [18]

    Xiang Y, Zhang J, Mao H, Yan Z, Wang X, Bao C, Zhu L 2021 Biomacromolecules 22 4846Google Scholar

    [19]

    Knowles T P J, Mezzenga R 2016 Adv. Mater. 28 6546Google Scholar

    [20]

    Du X, Zhou J, Shi J, Xu B 2015 Chem. Rev. 115 13165Google Scholar

    [21]

    Altunbas A, Lee S J, Rajasekaran S A, Schneider J P, Pochan D J 2011 Biomaterials 32 5906Google Scholar

    [22]

    Hauser C A E, Zhang S 2010 Nature 468 516Google Scholar

    [23]

    Zhang Y S, Yue K, Aleman J, Mollazadeh-Moghaddam K, Bakht S M, Yang J, Jia W, Dell’Erba V, Assawes P, Shin S R, Dokmeci M R, Oklu R, Khademhosseini A 2017 Ann. Biomed. Eng. 45 148Google Scholar

    [24]

    Feiner R, Dvir T 2017 Nat. Rev. Mater. 3 17076Google Scholar

    [25]

    Fu L, Li L, Bian Q, Xue B, Jin J, Li J, Cao Y, Jiang Q, Li H 2023 Nature 618 740Google Scholar

    [26]

    Wang Y X, Geng Q, Lyu H, Sun W X P, Fan X Y, Ma K, Wu K, Wang J H, Wang Y C, Mei D Q, Guo C C, Xiu P, Pan D Y, Tao K 2024 Adv. Mater. 36 2401678Google Scholar

    [27]

    Ren H, Xu T, Liang K, Li J, Fang Y, Li F, Chen Y, Zhang H, Li D, Tang Y, Wang Y, Song C, Wang H, Zhu B 2022 iScience 25 103673Google Scholar

    [28]

    Rich S I, Wood R J, Majidi C 2018 Nat. Electron. 1 102Google Scholar

    [29]

    Basavalingappa V, Xue B, Rencus-Lazar S, Wang W, Tao K, Cao Y, Gazit E 2020 ChemPhotoChem 4 5154Google Scholar

    [30]

    Willner I, Willner B 2001 Trends in Biotechnol. 19 222Google Scholar

    [31]

    Xue B, Qin M, Wang T, Wu J, Luo D, Jiang Q, Li Y, Cao Y, Wang W 2016 Adv. Funct. Mater. 26 9053Google Scholar

    [32]

    Xue B, Sheng H, Li Y, Li L, Di W, Xu Z, Ma L, Wang X, Jiang H, Qin M, Yan Z, Jiang Q, Liu J M, Wang W, Cao Y 2022 Natl. Sci. Rev. 9 nwab147Google Scholar

    [33]

    Vale R D 2003 Cell 112 467Google Scholar

    [34]

    Gremer L, Schölzel D, Schenk C, Reinartz E, Labahn J, Ravelli R B G, Tusche M, Lopez-Iglesias C, Hoyer W, Heise H, Willbold D, Schröder G F 2017 Science 358 116Google Scholar

    [35]

    Zhang S, Holmes T, Lockshin C, Rich A 1993 Proc. Nat. Acad. Sci. U. S. A. 90 3334Google Scholar

    [36]

    Zhang S, Lockshin C, Cook R, Rich A 1994 Biopolymers 34 663Google Scholar

    [37]

    Zhang S, Rich A 1997 Proc. Nat. Acad. Sci. U. S. A. 94 23Google Scholar

    [38]

    Caplan M R, Schwartzfarb E M, Zhang S, Kamm R D, Lauffenburger D A 2002 Biomaterials 23 219Google Scholar

    [39]

    Zhang S, Holmes T C, DiPersio C M, Hynes R O, Su X, Rich A 1995 Biomaterials 16 1385Google Scholar

    [40]

    Davis M E, Motion J P M, Narmoneva D A, Takahashi T, Hakuno D, Kamm R D, Zhang S, Lee R T 2005 Circulation 111 442Google Scholar

    [41]

    Zou D, Cao Y, Qin M, Dai W, Wang W 2011 Chem. Commun. 47 7413Google Scholar

    [42]

    Reches M, Gazit E 2003 Science 300 625Google Scholar

    [43]

    Ji W, Xue B, Arnon Z A, Yuan H, Bera S, Li Q, Zaguri D, Reynolds N P, Li H, Chen Y, Gilead S, Rencus-Lazar S, Li J, Yang R, Cao Y, Gazit E 2019 ACS Nano 13 14477Google Scholar

    [44]

    Tao K, Xue B, Li Q, Hu W, Shimon L J W, Makam P, Si M, Yan X, Zhang M, Cao Y, Yang R, Li J, Gazit E 2019 Mater. Today 30 10Google Scholar

    [45]

    Bera S, Mondal S, Xue B, Shimon L J W, Cao Y, Gazit E 2019 Nat. Mater. 18 503Google Scholar

    [46]

    Yuan H, Xue B, Yang D, Rencus-Lazar S, Cao Y, Gazit E, Tan D, Yang R 2023 Research 6 0046Google Scholar

    [47]

    Ji W, Xue B, Bera S, Guerin S, Shimon L J W, Ma Q, Tofail S A M, Thompson D, Cao Y, Wang W, Gazit E 2021 Mater. Today 42 29Google Scholar

    [48]

    Tao K, Donnell J O, Yuan H, Haq E U, Guerin S, Shimon L J W, Xue B, Silien C, Cao Y, Thompson D, Yang R, Tofail S A M, Gazit E 2020 Energy Environ. Sci. 13 96Google Scholar

    [49]

    Bera S, Xue B, Rehak P, Jacoby G, Ji W, Shimon L J W, Beck R, Král P, Cao Y, Gazit E 2020 ACS Nano 14 1694Google Scholar

    [50]

    Ji W, Yuan H, Xue B, Guerin S, Li H, Zhang L, Liu Y, Shimon L J W, Si M, Cao Y, Wang W, Thompson D, Cai K, Yang R, Gazit E 2022 Angew. Chem. Int. Ed. 61 e202201234Google Scholar

    [51]

    Ji W, Xue B, Yin Y, Guerin S, Wang Y, Zhang L, Cheng Y, Shimon L J W, Chen Y, Thompson D, Yang R, Cao Y, Wang W, Cai K, Gazit E 2022 J. Am. Chem. Soc. 144 18375Google Scholar

    [52]

    Tao K, Xue B, Frere S, Slutsky I, Cao Y, Wang W, Gazit E 2017 Chem. Mater. 29 4454Google Scholar

    [53]

    Tao K, Xue B, Han S, Aizen R, Shimon L J W, Xu Z, Cao Y, Mei D, Wang W, Gazit E 2020 ACS Appl. Mater. Interfaces 12 45192Google Scholar

    [54]

    Yuan H, Cazade P-A, Zhou S, Shimon L J W, Yuan C, Tan D, Liu C, Fan W, Thangavel V, Cao Y, Thompson D, Yan X, Yang R, Xue B, Gazit E 2024 Small 20 2309493Google Scholar

    [55]

    Basavalingappa V, Bera S, Xue B, O’Donnell J, Guerin S, Cazade P-A, Yuan H, Haq E u, Silien C, Tao K, Shimon L J W, Tofail S A M, Thompson D, Kolusheva S, Yang R, Cao Y, Gazit E 2020 ACS Nano 14 7025Google Scholar

    [56]

    Xue B, Li Y, Yang F, Zhang C, Qin M, Cao Y, Wang W 2014 Nanoscale 6 7832Google Scholar

    [57]

    Basavalingappa V, Bera S, Xue B, Azuri I, Tang Y, Tao K, Shimon L J W, Sawaya M R, Kolusheva S, Eisenberg D S, Kronik L, Cao Y, Wei G, Gazit E 2019 Nat. Commun. 10 5256Google Scholar

    [58]

    Mutsamwira S, Ainscough E W, Partridge A C, Derrick P J, Filichev V V 2016 Chem. –Eur. J. ournal 22 10376Google Scholar

    [59]

    Wang T, Li Y, Wang J, Xu Y, Chen Y, Lu Z, Wang W, Xue B, Li Y, Cao Y 2020 ACS Biomater. Sci. Eng. 6 6800Google Scholar

    [60]

    Xue B, Zhao L, Qin X, Qin M, Lai J, Huang W, Lei H, Wang J, Wang W, Li Y, Cao Y 2019 ACS Macro Lett. 8 1383Google Scholar

    [61]

    Anderson S B, Lin C C, Kuntzler D V, Anseth K S 2011 Biomaterials 32 3564Google Scholar

    [62]

    Sridhar B V, Brock J L, Silver J S, Leight J L, Randolph M A, Anseth K S 2015 Adv. Healthcare Mater. 4 702Google Scholar

    [63]

    Li Y, Cao Y 2018 Chin. J. Polym. Sci. 36 366Google Scholar

    [64]

    Ding Y, Li Y, Qin M, Cao Y, Wang W 2013 Langmuir 29 13299Google Scholar

    [65]

    Cheng W, Li Y 2016 Sci. Chin. -Phys. Mech. Astron. 59 678711Google Scholar

    [66]

    Wu X, Huang W, Wu W H, Xue B, Xiang D, Li Y, Qin M, Sun F, Wang W, Zhang W B, Cao Y 2018 Nano Res. 11 5556Google Scholar

    [67]

    Zhou J, Cha R, Wu Z, Zhang C, He Y, Zhang H, Liu K, Fareed M S, Wang Z, Yang C, Zhang Y, Yan W, Wang K 2023 Nano Today 49 101801Google Scholar

    [68]

    Li Y, Wang L 2016 Chem. Lett. 45 1253Google Scholar

    [69]

    Goor O J G M, Hendrikse S I S, Dankers P Y W, Meijer E W 2017 Chem. Soc. Rev. 46 6621Google Scholar

    [70]

    Sun W, Xue B, Li Y, Qin M, Wu J, Lu K, Wu J, Cao Y, Jiang Q, Wang W 2016 Adv. Funct. Mater. 26 9044Google Scholar

    [71]

    Wang T, Zhang Y, Gu Z, Cheng W, Lei H, Qin M, Xue B, Wang W, Cao Y 2021 Chin. J. Chem. 39 2711Google Scholar

    [72]

    Li Y, Ding Y, Qin M, Cao Y, Wang W 2013 Chem. Commun. 49 8653Google Scholar

    [73]

    Wu J, Chen A, Qin M, Huang R, Zhang G, Xue B, Wei J, Li Y, Cao Y, Wang W 2015 Nanoscale 7 1655Google Scholar

    [74]

    Xia Y, Xue B, Qin M, Cao Y, Li Y, Wang W 2017 Sci. Rep. 7 9691Google Scholar

    [75]

    Zeng L, Song M, Gu J, Xu Z, Xue B, Li Y, Cao Y 2019 Biomimetics 4 36Google Scholar

    [76]

    Sun W, Xue B, Fan Q, Tao R, Wang C, Wang X, Li Y, Qin M, Wang W, Chen B, Cao Y 2020 Sci. Adv. 6 eaaz9531Google Scholar

    [77]

    Wang C, Jing Y, Yu W, Gu J, Wei Z, Chen A, Yen Y T, He X, Cen L, Chen A, Song X, Wu Y, Yu L, Tao G, Liu B, Wang S, Xue B, Li R 2023 Adv. Healthcare Mater. 12 2300877Google Scholar

    [78]

    Xue B, Bashir Z, Guo Y, Yu W, Sun W, Li Y, Zhang Y, Qin M, Wang W, Cao Y 2023 Nat. Commun. 14 2583Google Scholar

    [79]

    Pina S, Oliveira J M, Reis R L 2015 Adv. Mater. 27 1143Google Scholar

    [80]

    Xia D, Wang P, Ji X, Khashab N M, Sessler J L, Huang F 2020 Chem. Rev. 120 6070Google Scholar

    [81]

    Thorn A 2022 Curr. Opin. Struct. Biol. 74 102368Google Scholar

    [82]

    Dai X, Chen Y 2023 Adv. Mater. 35 2204798Google Scholar

    [83]

    Elofsson A 2023 Curr. Opin. Struct. Biol. 80 102594Google Scholar

    [84]

    Szymczak P, Szczurek E 2023 Curr. Opin. Struct. Biol. 83 102733Google Scholar

    [85]

    Wu X, Lin H, Bai R, Duan H 2024 Eur. J. Med. Chem. 268 116262Google Scholar

    [86]

    Kortemme T 2024 Cell 187 526Google Scholar

    [87]

    Basu B, Gowtham N H, Xiao Y, Kalidindi S R, Leong K W 2022 Acta Biomater. 143 1Google Scholar

    [88]

    Parvatikar P P, Patil S, Khaparkhuntikar K, Patil S, Singh P K, Sahana R, Kulkarni R V, Raghu A V 2023 Antiviral Res. 220 105740Google Scholar

    [89]

    King N P, Bale J B, Sheffler W, McNamara D E, Gonen S, Gonen T, Yeates T O, Baker D 2014 Nature 510 103Google Scholar

    [90]

    Eckman N, Nejatfard A, Cavet R, Grosskopf A K, Appel E A 2024 Nat. Rev. Bioeng. 2 408Google Scholar

    [91]

    Tao K, Makam P, Aizen R, Gazit E 2017 Science 358 eaam9756Google Scholar

    [92]

    Zhang L, Lu J R, Waigh T A 2021 Adv. Colloid Interface Sci. 287 102319Google Scholar

    [93]

    Zhao J W, Liu Q X, Tong X Y, Wang Y H, Cai K Y, Ji W 2024 Adv. Funct. Mater. 34 2401466Google Scholar

    [94]

    Shani L, Michelson A N, Minevich B, Fleger Y, Stern M, Shaulov A, Yeshurun Y, Gang O 2020 Nat. Commun. 11 5697Google Scholar

    [95]

    Cheng X, Shen Z, Zhang Y 2023 Nat. Sci. Rev. 11 nwad314Google Scholar

    [96]

    Nair V, Dalrymple A N, Yu Z, Balakrishnan G, Bettinger C J, Weber D J, Yang K, Robinson J T 2023 Science 382 eabn4732Google Scholar

    [97]

    Tang X, Shen H, Zhao S, Li N, Liu J 2023 Nat. Electron. 6 109Google Scholar

  • 图 1  基于氨基酸分子的自组织生物分子软物质纳米材料的力学性质受堆叠方式、氢键和手性影响 (a) 苯丙氨酸(L-Phenylalanine, L-Phe)、酪氨酸(L-Tyrosine, L-Tyr)和多巴(L-DOPE)的化学结构和晶体结构和堆叠方式[43]; (b) 缬氨酸(Valine, Val)、亮氨酸(Leucine, Leu)和甲硫氨酸(Leucine, Met)的化学结构、扫描电子显微镜(scanning electron microscope, SEM)照片(上), 原子力显微镜(atomic force microscope, AFM)测定的杨氏模量(中)以及Leu和Met分别的介电常数和压电常数(下)[46]; (c) 调控1, 2-二(4-吡啶基)乙烯(1, 2-bis(4-pyridyl)ethylene, BPE)和不同手性的乙酰化丙氨酸(acetylated alanine, AcA)的晶体组装模式以制备宏观物理性质可调的晶体材料示意图[47]

    Figure 1.  The physical and mechanical properties of self-assembling biomolecular soft matter nanomaterials based on amino acids are affected by stacking mode, hydrogen bonding and chirality: (a) Chemical structures, crystal structures and packing of phenylalanine (L-Phe), tyrosine (L-Tyr) and dopa (L-DOPE)[43]; (b) chemical structures, scanning electron microscope (SEM) images (top) and Young’s modulus (middle) measured by atomic force microscope (AFM) of valine (Val), leucine (Leu), and methionine (Met); the calculated dielectric constants and piezoelectric constants of Leu and Met (bottom)[46]; (c) schematic diagram of regulating the crystal assembling models of 1, 2-bis(4-pyridyl)ethylene (BPE) and different chirality of acetylated alanine (either L-AcA or D-AcA) to prepare crystal materials with macroscopic tunable physical properties[47].

    图 2  引入不同改性组件的自组织生物分子软物质纳米材料 (a) MCpP-FF纳米纤维在甲苯蒸发后聚集成的多空微球示意图及纳米微球的SEM照片[52]; (b) 二肽核酸自组装形成的超螺旋构象组成超分子框架的示意图和 SEM照片[53]; (c) 牛磺酸、ACES及CHES的化学结构(上)和超分子堆积示意图(下)[54]; (d) 含多苯环结构的短肽晶体的荧光照片(上), 热重分析和力学强度(下)[55]

    Figure 2.  Self-assembling biomolecular soft nanomaterials with different modified component: (a) Schematic diagram and SEM image of MCpP-FF nanofibers aggregated into porous microspheres after toluene evaporation[52]; (b) illustration and SEM image of supramolecular framework composed of the superhelix conformation formed by the self-assembly of dipeptide nucleic acid[53]; (c) chemical structures (top) and supramolecular packing diagram (bottom) of taurine, ACES and CHES[54]; (d) fluorescence images of short peptide crystals with polyphenyl structures (top), thermogravimetric analysis, and mechanical strength (bottom)[55].

    图 3  基于短肽及其衍生物的自组织生物分子软物质纳米材料应用开发 (a) 基于Fmoc-G-PNA缀合物的人工光合作用集成系统示意图[29]; (b) 含多巴的纳米纤维在pH调控下的细胞捕获和释放示意图(上)和光学照片(下)[59]; (c) 模仿抗冻蛋白结构的含苏氨酸的自组装多肽示意图(左上)、三种抑制肽的化学结构(左下)和随多肽浓度和过冷温度变化的冰晶生长速率(右)[60]

    Figure 3.  Applications of self-assembling biomolecular soft nanomaterials based on short peptides and their derivatives assemblies: (a) Schematic diagram of an integrated artificial photosynthesis system based on Fmoc-G-PNA conjugate[29]; (b) schematic diagram (top) and optical images (bottom) of cell capture and release of nanofibers containing Dopa under pH regulation[59]; (c) schematic diagram of threonine-containing self-assembling peptide mimicking the structure of antifreeze protein (upper left). Chemical structure of three peptides (lower left) and growth rate of ice crystals under different peptide concentration and supercooling temperature (right)[60].

    图 4  基于多肽及其衍生物的自组织生物分子水凝胶 (a) 钌络合物催化酪氨酸残基二聚的光交联方法增强凝胶机械稳定性示意图[64]; (b) 基于Dronpa145N的光响应水凝胶成胶原理示意图[66]; (c) 基于含多巴短肽可逆电氧化还原性质的超分子多肽水凝胶致动器设计(上)、电响应性质(中)和药物释放应用(下)[31]

    Figure 4.  Self-assembling biomolecular hydrogels based on peptides and their derivatives assemblies: (a) Schematic diagram of enhancing mechanical stability of hydrogel by photo-cross-linking strategy of tyrosine dimerization catalyzed by ruthenium complex[64]; (b) schematic diagram of photo-responsive hydrogels formation based on Dronpa145N[66]; (c) design (top), electro-response properties (middle), and drug release applications (bottom) of a supramolecular peptide hydrogel actuator based on the reversible electrochemical redox properties of dopa-containing short peptides[31].

    图 5  通过构建双网络或引入固体纳米材料构建自组织生物分子软物质复合材料 (a) 含自组装纳米纤维或纳米带的聚合物-超分子双网络水凝胶示意图[71]; (b) 石墨烯复合水凝胶的成胶原理示意图(上), 制备过程展示(左下)以及可注射性质展示(右下)[73]; (c) 传统“三明治”式凝胶和多肽包覆的石墨烯水凝胶的结构和等效电路示意图(上)、应变响应电容传感(中)和3D打印特性(下)[32]

    Figure 5.  Fabricating self-assembling biomolecular soft matter composite materials by constructing double networks or introducing solid nanomaterials: (a) Schematic diagram of polymer-supramolecular double network hydrogels containing self-assembled nanofibers or nanoribbons[71]; (b) schematic diagram of the gelation principle (top) and preparation process demonstration (lower left) of graphene hybrid hydrogel, as well as demonstration of its injectability (lower right)[73]; (c) structural and equivalent circuit diagram of traditional “sandwich” gel and peptide-coated graphene hydrogel (top), strain-responsive capacitance sensing (middle), and 3D printing characteristics (bottom)[32].

    图 6  通过生物分子离子螯合构建自组织生物分子软物质复合材料 (a) 单结合位点的单配体和多配体金属离子配位, 以及双结合位点的多配体金属离子配位的分子机制和状态模型示意图[76]; (b) 体内肿瘤或皮下注射(SC)水凝胶和钆离子溶液的随时间推移的磁共振成像照片[77]; (c) 具有分级结构的强韧水凝胶构建示意图. 与传统含物理交联点的双网络水凝胶(左上)相比, 该水凝胶自组装多肽-配位铜离子-隐藏柔性链聚合物的分级结构既耗散能量又提升机械强度[78]

    Figure 6.  Fabricating self-assembling biomolecular soft matter composite materials through biomolecular-ion chelation: (a) Schematic diagram of molecular mechanism and state model of single ligand and multiple-ligand metal ion coordination with single binding sites and tandem multiple-ligand coordination with double binding sites[76]; (b) magnetic resonance imaging images over time of intratumor or subcutaneous injection (SC) by hydrogels or gadolinium ion solutions[77]; (c) schematic diagram of strong, tough hydrogel with hierarchical structure. Compared with traditional double network hydrogel by physical crosslinking (upper left), this hydrogel’s hierarchical structure of self-assembling peptide-coordination copper ion-hidden flexible polymer both dissipates energy and improves mechanical strength[78].

  • [1]

    Weitz D A 2022 Nat. Mater. 21 986Google Scholar

    [2]

    Grzelczak M, Vermant J, Furst E M, Liz-Marzán L M 2010 ACS Nano 4 3591Google Scholar

    [3]

    He M, Gales J P, Ducrot É, Gong Z, Yi G-R, Sacanna S, Pine D J 2020 Nature 585 524Google Scholar

    [4]

    Kim Y J, Moon J B, Hwang H, Kim Y S, Yi G R 2023 Adv. Mater. 35 2203045Google Scholar

    [5]

    Díaz-Villanueva J F, Díaz-Molina R, García-González V 2015 Int. J. Mol. Sci. 16 17193Google Scholar

    [6]

    Shin Y, Brangwynne C P 2017 Science 357 eaaf4382Google Scholar

    [7]

    Soukasene S, Toft D J, Moyer T J, Lu H, Lee H K, Standley S M, Cryns V L, Stupp S I 2011 ACS Nano 5 9113Google Scholar

    [8]

    Abbas M, Zou Q, Li S, Yan X 2017 Adv. Mater. 29 1605021Google Scholar

    [9]

    Webber M J, Han X, Prasanna Murthy S N, Rajangam K, Stupp S I, Lomasney J W 2010 J. Tissue Eng. Regenerative Med. 4 600Google Scholar

    [10]

    Gu Z, Wang J, Fu Y, Pan H, He H, Gan Q, Liu C 2023 Adv. Funct. Mater. 33 2212561Google Scholar

    [11]

    Du X, Zhou J, Guvench O, Sangiorgi F O, Li X, Zhou N, Xu B 2014 Bioconjugate Chem. 25 1031Google Scholar

    [12]

    Webber M J, Tongers J, Renault M A, Roncalli J G, Losordo D W, Stupp S I 2010 Acta Biomater. 6 3Google Scholar

    [13]

    Webber M J, Appel E A, Meijer E W, Langer R 2016 Nat. Mater. 15 13Google Scholar

    [14]

    Levin A, Hakala T A, Schnaider L, Bernardes G J L, Gazit E, Knowles T P J 2020 Nat. Rev. Chem. 4 615Google Scholar

    [15]

    Parsons J T, Horwitz A R, Schwartz M A 2010 Nat. Rev. Mol. Cell Biol. 11 633Google Scholar

    [16]

    Theocharis A D, Skandalis S S, Gialeli C, Karamanos N K 2016 Adv. Drug Delivery Rev. 97 4Google Scholar

    [17]

    Hayes J D, Flanagan J U, Jowsey I R 2005 Ann. Rev. Pharmacol. Toxicol. 45 51Google Scholar

    [18]

    Xiang Y, Zhang J, Mao H, Yan Z, Wang X, Bao C, Zhu L 2021 Biomacromolecules 22 4846Google Scholar

    [19]

    Knowles T P J, Mezzenga R 2016 Adv. Mater. 28 6546Google Scholar

    [20]

    Du X, Zhou J, Shi J, Xu B 2015 Chem. Rev. 115 13165Google Scholar

    [21]

    Altunbas A, Lee S J, Rajasekaran S A, Schneider J P, Pochan D J 2011 Biomaterials 32 5906Google Scholar

    [22]

    Hauser C A E, Zhang S 2010 Nature 468 516Google Scholar

    [23]

    Zhang Y S, Yue K, Aleman J, Mollazadeh-Moghaddam K, Bakht S M, Yang J, Jia W, Dell’Erba V, Assawes P, Shin S R, Dokmeci M R, Oklu R, Khademhosseini A 2017 Ann. Biomed. Eng. 45 148Google Scholar

    [24]

    Feiner R, Dvir T 2017 Nat. Rev. Mater. 3 17076Google Scholar

    [25]

    Fu L, Li L, Bian Q, Xue B, Jin J, Li J, Cao Y, Jiang Q, Li H 2023 Nature 618 740Google Scholar

    [26]

    Wang Y X, Geng Q, Lyu H, Sun W X P, Fan X Y, Ma K, Wu K, Wang J H, Wang Y C, Mei D Q, Guo C C, Xiu P, Pan D Y, Tao K 2024 Adv. Mater. 36 2401678Google Scholar

    [27]

    Ren H, Xu T, Liang K, Li J, Fang Y, Li F, Chen Y, Zhang H, Li D, Tang Y, Wang Y, Song C, Wang H, Zhu B 2022 iScience 25 103673Google Scholar

    [28]

    Rich S I, Wood R J, Majidi C 2018 Nat. Electron. 1 102Google Scholar

    [29]

    Basavalingappa V, Xue B, Rencus-Lazar S, Wang W, Tao K, Cao Y, Gazit E 2020 ChemPhotoChem 4 5154Google Scholar

    [30]

    Willner I, Willner B 2001 Trends in Biotechnol. 19 222Google Scholar

    [31]

    Xue B, Qin M, Wang T, Wu J, Luo D, Jiang Q, Li Y, Cao Y, Wang W 2016 Adv. Funct. Mater. 26 9053Google Scholar

    [32]

    Xue B, Sheng H, Li Y, Li L, Di W, Xu Z, Ma L, Wang X, Jiang H, Qin M, Yan Z, Jiang Q, Liu J M, Wang W, Cao Y 2022 Natl. Sci. Rev. 9 nwab147Google Scholar

    [33]

    Vale R D 2003 Cell 112 467Google Scholar

    [34]

    Gremer L, Schölzel D, Schenk C, Reinartz E, Labahn J, Ravelli R B G, Tusche M, Lopez-Iglesias C, Hoyer W, Heise H, Willbold D, Schröder G F 2017 Science 358 116Google Scholar

    [35]

    Zhang S, Holmes T, Lockshin C, Rich A 1993 Proc. Nat. Acad. Sci. U. S. A. 90 3334Google Scholar

    [36]

    Zhang S, Lockshin C, Cook R, Rich A 1994 Biopolymers 34 663Google Scholar

    [37]

    Zhang S, Rich A 1997 Proc. Nat. Acad. Sci. U. S. A. 94 23Google Scholar

    [38]

    Caplan M R, Schwartzfarb E M, Zhang S, Kamm R D, Lauffenburger D A 2002 Biomaterials 23 219Google Scholar

    [39]

    Zhang S, Holmes T C, DiPersio C M, Hynes R O, Su X, Rich A 1995 Biomaterials 16 1385Google Scholar

    [40]

    Davis M E, Motion J P M, Narmoneva D A, Takahashi T, Hakuno D, Kamm R D, Zhang S, Lee R T 2005 Circulation 111 442Google Scholar

    [41]

    Zou D, Cao Y, Qin M, Dai W, Wang W 2011 Chem. Commun. 47 7413Google Scholar

    [42]

    Reches M, Gazit E 2003 Science 300 625Google Scholar

    [43]

    Ji W, Xue B, Arnon Z A, Yuan H, Bera S, Li Q, Zaguri D, Reynolds N P, Li H, Chen Y, Gilead S, Rencus-Lazar S, Li J, Yang R, Cao Y, Gazit E 2019 ACS Nano 13 14477Google Scholar

    [44]

    Tao K, Xue B, Li Q, Hu W, Shimon L J W, Makam P, Si M, Yan X, Zhang M, Cao Y, Yang R, Li J, Gazit E 2019 Mater. Today 30 10Google Scholar

    [45]

    Bera S, Mondal S, Xue B, Shimon L J W, Cao Y, Gazit E 2019 Nat. Mater. 18 503Google Scholar

    [46]

    Yuan H, Xue B, Yang D, Rencus-Lazar S, Cao Y, Gazit E, Tan D, Yang R 2023 Research 6 0046Google Scholar

    [47]

    Ji W, Xue B, Bera S, Guerin S, Shimon L J W, Ma Q, Tofail S A M, Thompson D, Cao Y, Wang W, Gazit E 2021 Mater. Today 42 29Google Scholar

    [48]

    Tao K, Donnell J O, Yuan H, Haq E U, Guerin S, Shimon L J W, Xue B, Silien C, Cao Y, Thompson D, Yang R, Tofail S A M, Gazit E 2020 Energy Environ. Sci. 13 96Google Scholar

    [49]

    Bera S, Xue B, Rehak P, Jacoby G, Ji W, Shimon L J W, Beck R, Král P, Cao Y, Gazit E 2020 ACS Nano 14 1694Google Scholar

    [50]

    Ji W, Yuan H, Xue B, Guerin S, Li H, Zhang L, Liu Y, Shimon L J W, Si M, Cao Y, Wang W, Thompson D, Cai K, Yang R, Gazit E 2022 Angew. Chem. Int. Ed. 61 e202201234Google Scholar

    [51]

    Ji W, Xue B, Yin Y, Guerin S, Wang Y, Zhang L, Cheng Y, Shimon L J W, Chen Y, Thompson D, Yang R, Cao Y, Wang W, Cai K, Gazit E 2022 J. Am. Chem. Soc. 144 18375Google Scholar

    [52]

    Tao K, Xue B, Frere S, Slutsky I, Cao Y, Wang W, Gazit E 2017 Chem. Mater. 29 4454Google Scholar

    [53]

    Tao K, Xue B, Han S, Aizen R, Shimon L J W, Xu Z, Cao Y, Mei D, Wang W, Gazit E 2020 ACS Appl. Mater. Interfaces 12 45192Google Scholar

    [54]

    Yuan H, Cazade P-A, Zhou S, Shimon L J W, Yuan C, Tan D, Liu C, Fan W, Thangavel V, Cao Y, Thompson D, Yan X, Yang R, Xue B, Gazit E 2024 Small 20 2309493Google Scholar

    [55]

    Basavalingappa V, Bera S, Xue B, O’Donnell J, Guerin S, Cazade P-A, Yuan H, Haq E u, Silien C, Tao K, Shimon L J W, Tofail S A M, Thompson D, Kolusheva S, Yang R, Cao Y, Gazit E 2020 ACS Nano 14 7025Google Scholar

    [56]

    Xue B, Li Y, Yang F, Zhang C, Qin M, Cao Y, Wang W 2014 Nanoscale 6 7832Google Scholar

    [57]

    Basavalingappa V, Bera S, Xue B, Azuri I, Tang Y, Tao K, Shimon L J W, Sawaya M R, Kolusheva S, Eisenberg D S, Kronik L, Cao Y, Wei G, Gazit E 2019 Nat. Commun. 10 5256Google Scholar

    [58]

    Mutsamwira S, Ainscough E W, Partridge A C, Derrick P J, Filichev V V 2016 Chem. –Eur. J. ournal 22 10376Google Scholar

    [59]

    Wang T, Li Y, Wang J, Xu Y, Chen Y, Lu Z, Wang W, Xue B, Li Y, Cao Y 2020 ACS Biomater. Sci. Eng. 6 6800Google Scholar

    [60]

    Xue B, Zhao L, Qin X, Qin M, Lai J, Huang W, Lei H, Wang J, Wang W, Li Y, Cao Y 2019 ACS Macro Lett. 8 1383Google Scholar

    [61]

    Anderson S B, Lin C C, Kuntzler D V, Anseth K S 2011 Biomaterials 32 3564Google Scholar

    [62]

    Sridhar B V, Brock J L, Silver J S, Leight J L, Randolph M A, Anseth K S 2015 Adv. Healthcare Mater. 4 702Google Scholar

    [63]

    Li Y, Cao Y 2018 Chin. J. Polym. Sci. 36 366Google Scholar

    [64]

    Ding Y, Li Y, Qin M, Cao Y, Wang W 2013 Langmuir 29 13299Google Scholar

    [65]

    Cheng W, Li Y 2016 Sci. Chin. -Phys. Mech. Astron. 59 678711Google Scholar

    [66]

    Wu X, Huang W, Wu W H, Xue B, Xiang D, Li Y, Qin M, Sun F, Wang W, Zhang W B, Cao Y 2018 Nano Res. 11 5556Google Scholar

    [67]

    Zhou J, Cha R, Wu Z, Zhang C, He Y, Zhang H, Liu K, Fareed M S, Wang Z, Yang C, Zhang Y, Yan W, Wang K 2023 Nano Today 49 101801Google Scholar

    [68]

    Li Y, Wang L 2016 Chem. Lett. 45 1253Google Scholar

    [69]

    Goor O J G M, Hendrikse S I S, Dankers P Y W, Meijer E W 2017 Chem. Soc. Rev. 46 6621Google Scholar

    [70]

    Sun W, Xue B, Li Y, Qin M, Wu J, Lu K, Wu J, Cao Y, Jiang Q, Wang W 2016 Adv. Funct. Mater. 26 9044Google Scholar

    [71]

    Wang T, Zhang Y, Gu Z, Cheng W, Lei H, Qin M, Xue B, Wang W, Cao Y 2021 Chin. J. Chem. 39 2711Google Scholar

    [72]

    Li Y, Ding Y, Qin M, Cao Y, Wang W 2013 Chem. Commun. 49 8653Google Scholar

    [73]

    Wu J, Chen A, Qin M, Huang R, Zhang G, Xue B, Wei J, Li Y, Cao Y, Wang W 2015 Nanoscale 7 1655Google Scholar

    [74]

    Xia Y, Xue B, Qin M, Cao Y, Li Y, Wang W 2017 Sci. Rep. 7 9691Google Scholar

    [75]

    Zeng L, Song M, Gu J, Xu Z, Xue B, Li Y, Cao Y 2019 Biomimetics 4 36Google Scholar

    [76]

    Sun W, Xue B, Fan Q, Tao R, Wang C, Wang X, Li Y, Qin M, Wang W, Chen B, Cao Y 2020 Sci. Adv. 6 eaaz9531Google Scholar

    [77]

    Wang C, Jing Y, Yu W, Gu J, Wei Z, Chen A, Yen Y T, He X, Cen L, Chen A, Song X, Wu Y, Yu L, Tao G, Liu B, Wang S, Xue B, Li R 2023 Adv. Healthcare Mater. 12 2300877Google Scholar

    [78]

    Xue B, Bashir Z, Guo Y, Yu W, Sun W, Li Y, Zhang Y, Qin M, Wang W, Cao Y 2023 Nat. Commun. 14 2583Google Scholar

    [79]

    Pina S, Oliveira J M, Reis R L 2015 Adv. Mater. 27 1143Google Scholar

    [80]

    Xia D, Wang P, Ji X, Khashab N M, Sessler J L, Huang F 2020 Chem. Rev. 120 6070Google Scholar

    [81]

    Thorn A 2022 Curr. Opin. Struct. Biol. 74 102368Google Scholar

    [82]

    Dai X, Chen Y 2023 Adv. Mater. 35 2204798Google Scholar

    [83]

    Elofsson A 2023 Curr. Opin. Struct. Biol. 80 102594Google Scholar

    [84]

    Szymczak P, Szczurek E 2023 Curr. Opin. Struct. Biol. 83 102733Google Scholar

    [85]

    Wu X, Lin H, Bai R, Duan H 2024 Eur. J. Med. Chem. 268 116262Google Scholar

    [86]

    Kortemme T 2024 Cell 187 526Google Scholar

    [87]

    Basu B, Gowtham N H, Xiao Y, Kalidindi S R, Leong K W 2022 Acta Biomater. 143 1Google Scholar

    [88]

    Parvatikar P P, Patil S, Khaparkhuntikar K, Patil S, Singh P K, Sahana R, Kulkarni R V, Raghu A V 2023 Antiviral Res. 220 105740Google Scholar

    [89]

    King N P, Bale J B, Sheffler W, McNamara D E, Gonen S, Gonen T, Yeates T O, Baker D 2014 Nature 510 103Google Scholar

    [90]

    Eckman N, Nejatfard A, Cavet R, Grosskopf A K, Appel E A 2024 Nat. Rev. Bioeng. 2 408Google Scholar

    [91]

    Tao K, Makam P, Aizen R, Gazit E 2017 Science 358 eaam9756Google Scholar

    [92]

    Zhang L, Lu J R, Waigh T A 2021 Adv. Colloid Interface Sci. 287 102319Google Scholar

    [93]

    Zhao J W, Liu Q X, Tong X Y, Wang Y H, Cai K Y, Ji W 2024 Adv. Funct. Mater. 34 2401466Google Scholar

    [94]

    Shani L, Michelson A N, Minevich B, Fleger Y, Stern M, Shaulov A, Yeshurun Y, Gang O 2020 Nat. Commun. 11 5697Google Scholar

    [95]

    Cheng X, Shen Z, Zhang Y 2023 Nat. Sci. Rev. 11 nwad314Google Scholar

    [96]

    Nair V, Dalrymple A N, Yu Z, Balakrishnan G, Bettinger C J, Weber D J, Yang K, Robinson J T 2023 Science 382 eabn4732Google Scholar

    [97]

    Tang X, Shen H, Zhao S, Li N, Liu J 2023 Nat. Electron. 6 109Google Scholar

  • [1] Chen Hui-Yan, Li Luo-Fei, Wang Wei, Cao Yi, Lei Hai. Regulation of mechanical force on cardiomyocytes beating. Acta Physica Sinica, 2024, 73(8): 088701. doi: 10.7498/aps.73.20240095
    [2] Zhang Zi-Xu, Wang Lei. Tensile properties and damage mechanism of diamondene with boundary cracks. Acta Physica Sinica, 2022, 71(20): 206301. doi: 10.7498/aps.71.20220913
    [3] Guo Jin-Kun, Zhao Ze-Jia, Ling Jin-Zhong, Yuan Ying, Wang Xiao-Rui. Laser micro/nanomachining technology for soft matter. Acta Physica Sinica, 2022, 71(17): 174203. doi: 10.7498/aps.71.20220625
    [4] Chen Kang, Shen Yu-Nian. Nonlinear frictional contact behavior of porous polymer hydrogels for soft robot. Acta Physica Sinica, 2021, 70(12): 120201. doi: 10.7498/aps.70.20202134
    [5] Wang Xing-Zheng, Yang Chen-Jing, Cai Li-Heng, Chen Dong. The rheology property of organogels based on 3D helical nanofilament bnetworks self-assembled by bent-core liquid crystals. Acta Physica Sinica, 2020, 69(8): 086102. doi: 10.7498/aps.69.20200332
    [6] Ye Shu-Ji,  Li Chuan-Zhao,  Zhang Jia-Hui,  Tan Jun-Jun,  Luo Yi. Research progress of molecular structure and dynamics of biological water. Acta Physica Sinica, 2019, 68(1): 013101. doi: 10.7498/aps.68.20181273
    [7] Zhu Qi, Yuan Xie-Tao, Zhu Yi-Hao, Zhang Xiao-Hua, Yang Zhao-Hui. Flexible solid-state supercapacitors based on shrunk high-density aligned carbon nanotube arrays. Acta Physica Sinica, 2018, 67(2): 028201. doi: 10.7498/aps.67.20171855
    [8] Wang Xi, Li Ming, Ye Fang-Fu, Zhou Xin. Modelling and simulation of DNA hydrogel with a coarse-grained model. Acta Physica Sinica, 2017, 66(15): 150201. doi: 10.7498/aps.66.150201
    [9] Chen En-Hui, Yang Jin-Hong, Li Dong, Zhao Ya-Pu. Erratum: On the theoretical basis of rational continuum mechanics in softmatter [Acta Phys.Sin.2016,65(18): 188103]. Acta Physica Sinica, 2016, 65(23): 239901. doi: 10.7498/aps.65.239901
    [10] Qian Hui, Chen Hu, Yan Jie. Frontier of soft matter experimental technique: single molecular manipulation. Acta Physica Sinica, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [11] Zhang Wen-Bin, Chen Er-Qiang, Wang Jing, Zhang Wei, Wang Lin-Ge, Cheng Stephen Z. D.. Soft matters from nano-atoms to giant molecules. Acta Physica Sinica, 2016, 65(18): 183601. doi: 10.7498/aps.65.183601
    [12] Wu Jin-Bo, Wen Wei-Jia. Research progress of field-inducedd soft smart materials. Acta Physica Sinica, 2016, 65(18): 188301. doi: 10.7498/aps.65.188301
    [13] Wu Chen-Xu, Yan Da-Dong, Xing Xiang-Jun, Hou Mei-Ying. A summary of soft matter theories. Acta Physica Sinica, 2016, 65(18): 186102. doi: 10.7498/aps.65.186102
    [14] Yan Zhao, Zhao Wen-Jing, Wang Rong-Yao. Kinetic study of nanorods self-assembly process based on logistic function model. Acta Physica Sinica, 2016, 65(12): 126101. doi: 10.7498/aps.65.126101
    [15] He Xin, Bai Qing-Shun, Bai Jin-Xuan. Molecular dynamics study of the tensile mechanical properties of polycrystalline graphene. Acta Physica Sinica, 2016, 65(11): 116101. doi: 10.7498/aps.65.116101
    [16] Chen En-Hui, Yang Jin-Hong, Li Dong, Zhao Ya-Pu. On the theoretical basis of rational continuum mechanics in softmatter. Acta Physica Sinica, 2016, 65(18): 188103. doi: 10.7498/aps.65.188103
    [17] Zhang Yun-An, Tao Jun-Yong, Chen Xun, Liu Bin. Influence of water on the tensile properties of amorphous silica:a reactive molecular dynamics simulation. Acta Physica Sinica, 2013, 62(24): 246801. doi: 10.7498/aps.62.246801
    [18] Zhou Heng-Wei, Liu Jun, Lei Ting, Huang Yi-Neng. Application of reed-vibration mechanical spectroscopy of liquids for studying dehydration denaturation of protein hydrogel. Acta Physica Sinica, 2013, 62(7): 076203. doi: 10.7498/aps.62.076203
    [19] Li Ming-Lin, Lin Fan, Chen Yue. Study on the mechanical properties of carbon nanocones using molecular dynamics simulation. Acta Physica Sinica, 2013, 62(1): 016102. doi: 10.7498/aps.62.016102
    [20] Shi Shun-Ping, Li Yong, Fan Yong-Sheng, Chen Xu, Zhou Wei. Molecular dynamics simulation for the impact of hydrazineon the water of pressurized water reactors. Acta Physica Sinica, 2011, 60(3): 032802. doi: 10.7498/aps.60.032802
Metrics
  • Abstract views:  1657
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  09 July 2024
  • Accepted Date:  01 August 2024
  • Available Online:  14 August 2024
  • Published Online:  05 September 2024

/

返回文章
返回