-
The mechanical behaviors of carbon nanocone (CNCs) with equivalent number of atoms under uniaxial extension and uniaxial compress are investigated using classical molecular dynamics simulations, exploring the Brenner and Lennard-Jones potentials to represent the interatomic interaction. The mechanical properties including elastic strain limit, ultimate longitudinal loading, and configuration evolution of CNC, are obtained and compared with those of carbon nanotube that consists of equivalent atoms. Under tension, CNC with larger apex angle presents a higher failure strength in general, as well as a larger maximum strain. However, the failure strength of the CNC with largest conical angle of 112.88° is the smallest one. The carbon nanotube with (15, 0) and 4 nm length presents a moderate strength and strain. Under compression, CNCs with conical angle of 112.88° and 83.62° have true chiral inversion without the chemical bond break. However, the other CNC exhibits unstable uniaxial compress and sudden lateral bend under compression. The force that buckles these carbon nanostructures decreases as the conical angle increases, except for the CNC of 38.94°. Results in the present study show that a certain CNC possesses more excellent mechanical properties than the equivalent CNT and is expected to substitute CNT and to be applied to some engineering fields such as nanosensors and nanoscale composites.
-
Keywords:
- carbon nanocones /
- carbon nanotubes /
- molecular dynamics simulation /
- mechanical properties
[1] Iijima S 1991 Nature 354 56
[2] Mahar B, Laslau C, Yip R, Sun Y 2007 Sens. J. IEEE. 7 266
[3] Hill E W, Vijayaragahvan V, Novoselov K 2011 Sens. J. IEEE. 11 3161
[4] Adisa O O, Cox B J, Hill J M 2011 J. Phys. Chem. C 115 24528
[5] Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132
[6] Ge M, Sattler K 1994 Chem. Phys. Lett. 220 192
[7] Krishnan A, Dujardin E, Treacy M M J, Hugdahl J, Lynum S, Ebbesen T W 1997 Nature 388 451
[8] Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K 1999 Chem. Phys. Lett. 309 165
[9] Yang N, Zhang G, Li B 2008 Appl. Phys. Lett. 93 243111
[10] Lu X, Yang Q, Xiao C, Hirose A 2006 Appl. Phys. A: Mate. Sci. Proc. 82 293
[11] Zhang S, Yao Z, Zhao S, Zhang E 2006 Appl. Phys. Lett. 89 131923
[12] Wei C Y, Srivastava D 2004 Appl. Phys. Lett. 85 2208
[13] Jordan S P, Crespi V H 2004 Phys. Rev. Lett. 93 255504
[14] Tsai P C, Fang T H 2007 Nanotechnology 18 105702
[15] Wei J X, Liew K M, He X Q 2007 Appl. Phys. Lett. 91 261906
[16] Liew K M, Wei J X, He X Q 2007 Phys. Rev. B 75 195435
[17] Firouz-Abadi R D, Amini H, Hosseinian A R 2012 Appl. Phys. Lett. 100 173108
[18] Shen H J, Shi Y J 2007 J. Atom. Mole. Phys. 24 883 (in Chinese) [沈海军, 史海进 2007 原子与分子物理学报 24 883]
[19] Plimpton S 1995 J. Comp. Phys. 117 1
[20] Brenner D W 1990 Phys. Rev. B 42 9458
[21] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.: Cond. Matt. 14 783
[22] Liew K M, Wong C H, He X Q, Tan M J 2005 Phys. Rev. B 71 075424
[23] Fu C X, Chen Y F, Jiao J W 2008 Sci. China E: Tech. Sci. 38 411 (in Chinese) [付称心, 陈云飞, 焦继伟 2008 中国科学E辑: 技术科学 38 411]
-
[1] Iijima S 1991 Nature 354 56
[2] Mahar B, Laslau C, Yip R, Sun Y 2007 Sens. J. IEEE. 7 266
[3] Hill E W, Vijayaragahvan V, Novoselov K 2011 Sens. J. IEEE. 11 3161
[4] Adisa O O, Cox B J, Hill J M 2011 J. Phys. Chem. C 115 24528
[5] Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132
[6] Ge M, Sattler K 1994 Chem. Phys. Lett. 220 192
[7] Krishnan A, Dujardin E, Treacy M M J, Hugdahl J, Lynum S, Ebbesen T W 1997 Nature 388 451
[8] Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K 1999 Chem. Phys. Lett. 309 165
[9] Yang N, Zhang G, Li B 2008 Appl. Phys. Lett. 93 243111
[10] Lu X, Yang Q, Xiao C, Hirose A 2006 Appl. Phys. A: Mate. Sci. Proc. 82 293
[11] Zhang S, Yao Z, Zhao S, Zhang E 2006 Appl. Phys. Lett. 89 131923
[12] Wei C Y, Srivastava D 2004 Appl. Phys. Lett. 85 2208
[13] Jordan S P, Crespi V H 2004 Phys. Rev. Lett. 93 255504
[14] Tsai P C, Fang T H 2007 Nanotechnology 18 105702
[15] Wei J X, Liew K M, He X Q 2007 Appl. Phys. Lett. 91 261906
[16] Liew K M, Wei J X, He X Q 2007 Phys. Rev. B 75 195435
[17] Firouz-Abadi R D, Amini H, Hosseinian A R 2012 Appl. Phys. Lett. 100 173108
[18] Shen H J, Shi Y J 2007 J. Atom. Mole. Phys. 24 883 (in Chinese) [沈海军, 史海进 2007 原子与分子物理学报 24 883]
[19] Plimpton S 1995 J. Comp. Phys. 117 1
[20] Brenner D W 1990 Phys. Rev. B 42 9458
[21] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.: Cond. Matt. 14 783
[22] Liew K M, Wong C H, He X Q, Tan M J 2005 Phys. Rev. B 71 075424
[23] Fu C X, Chen Y F, Jiao J W 2008 Sci. China E: Tech. Sci. 38 411 (in Chinese) [付称心, 陈云飞, 焦继伟 2008 中国科学E辑: 技术科学 38 411]
Catalog
Metrics
- Abstract views: 7702
- PDF Downloads: 758
- Cited By: 0