Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation of contact behaviors between multiwall carbon nanotube and metal surface

Yang Quan Ma Li Geng Song-Chao Lin Yi-Ni Chen Tao Sun Li-Ning

Citation:

Molecular dynamics simulation of contact behaviors between multiwall carbon nanotube and metal surface

Yang Quan, Ma Li, Geng Song-Chao, Lin Yi-Ni, Chen Tao, Sun Li-Ning
PDF
HTML
Get Citation
  • The interfacial contact configuration and contact intensity between carbon nanotube and metal surface play an important role in the electrical performance of carbon nanotube field effect transistors and nanoscale carbon nanotube robotic manipulation. In this paper, we investigate numerically the contact configuration and the contact intensity between multiwall carbon nanotube with open ends or capped ends and various metal surfaces in carbon nanotube field effect transistor assembly by the molecular dynamics simulation. The simulation results show that the change in the position and shape of multiwall carbon nanotube on the metal surface are mainly due to the decrease of van der Waals energy reduction: the decrement of van der Waals energy is converted into the internal energy and kinetic energy of carbon nanotubes. Moreover, the binding energy between multiwall carbon nanotube and metal surface is negative, which indicates that multiwall carbon nanotube adheres to the metal surface. In addition, the contact intensity of multiwall carbon nanotube in horizontally contacting metal surface is influenced by initial distance, contact length and metal materials. The final equilibrium distance is around ~0.3 nm when the initial distance is less than ~1 nm. And the contact intensity increases with the augment of contact length between carbon nanotube and metal. The contact intensity between platinum and carbon nanotube is larger than that between tungsten and aluminum, therefore, platinum-coated probe is generally utilized for picking carbon nanotube up. The contact intensity of the carbon nanotubes with the open ends and closed ends in the vertical contact with the metal surface are both lower than those in the horizontal contact. The interfacial contact configuration of carbon nanotube and metal materials mainly include the displacement and geometric deformation of carbon nanotube. The displacement and geometric deformation of multiwall carbon nanotube with open ends on the metal surface finally result in its radial nanoscale ribbon structure. But the closed-end three-wall carbon nanotube has the small axial geometric deformation through comparing the concentration profiles between the initial carbon nanotube and the collapsed carbon nanotube. In a carbon nanotube field effect transistor, the collapsed multiwall carbon nanotube forms the ribbon structure like a single wall carbon nanotube. And the distance between carbon nanotube walls and between the outermost carbon nanotube wall and the metal electrode are both about ~0.34 nm. The atomic scale spacing ensures that electrons tunnel from the metal to the outermost carbon nanotube wall and migrate radially between the inner carbon nanotube walls.
      Corresponding author: Ma Li, malian@shu.edu.cn ; Chen Tao, chent@suda.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1309200) and the National Natural Science Foundation of China (Grant No. 61573238)
    [1]

    Yu M F, Dyer M J, Skidmore G D, Rohrs H W, Lu X, Ausman K D, Ehr J R V, Ruoff R S 1999 Nanotechnology 10 244Google Scholar

    [2]

    Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F, S. R R 2000 Science 287 637Google Scholar

    [3]

    Ding H Y, Shi C Y, Li M, Zhan Y, Wang M Y, Wang Y Q, Tao C, Sun L N, Fukuda T 2018 Sensors 18 1137Google Scholar

    [4]

    王亚洲, 马立, 杨权, 耿松超, 林旖旎, 陈涛, 孙立宁 2020 物理学报 69 068801Google Scholar

    Wang Y Z, Ma L, Yang Q, Geng S C, Lin Y N, Chen T, Sun L N 2020 Acta Phys. Sin. 69 068801Google Scholar

    [5]

    Zhang Z Y, Wang S, Ding L, Liang X L, Xu H L, Shen J, Chen Q, Cui R L, Li Y, Peng L M 2008 Appl. Phys. Lett. 92 133117Google Scholar

    [6]

    Xie S, Jiao N, Tung S, Liu L 2015 Micromachines 6 1317Google Scholar

    [7]

    Yu N, Shi Q, Nakajima M, Wang H P, Yang Z, Sun L N, Huang Q, Fukuda T 2017 J. Micromech. Microeng. 27 105007Google Scholar

    [8]

    Fukuda T, Arai F, Dong L 2003 Proc. IEEE 91 1803

    [9]

    Yang Z, Chen T, Wang Y Q, Sun L N, Fukuda T 2016 Micro-Nano Lett. 11 645Google Scholar

    [10]

    杨权, 马立, 杨斌, 丁汇洋, 陈涛, 杨湛, 孙立宁, 福田敏男 2018 物理学报 67 136801Google Scholar

    Yang Q, Ma L, Yang B, Ding H Y, Chen T, Yang Z, Sun L N, Toshio F 2018 Acta Phys. Sin. 67 136801Google Scholar

    [11]

    Liu P, Nakajima M, Yang Z, Fukuda T, Arai F 2009 Proc. IMechE Part N: J. Nanoengineering and Nanosystems 222 33

    [12]

    Yu N, Nakajima M, Shi Q, Yang Z, Wang H P, Sun L N, Huang Q, Fukuda T 2017 Scanning 2017 5910734

    [13]

    Shi Q, Yang Z, Guo Y N, Wang H P, Sun L N, Huang Q, Fukuda T 2017 IEEE/ASME Trans. Mechatron. 22 845Google Scholar

    [14]

    Chen Q, Wang S, Peng L M 2006 Nanotechnology 17 1087Google Scholar

    [15]

    Martel R, Schmidt T, Shea H R, Hertel T, Avouris P 1998 Appl. Phys. Lett. 73 2447Google Scholar

    [16]

    Cui J L, Zhang J W, He X Q, Mei X S, Wang W J, Yang X J, Xie H, Yang L J, Wang Y 2017 J. Nanopart. Res. 19 110Google Scholar

    [17]

    Gao G H, Çagin T, Goddard W A 1998 Nanotechnology 9 184Google Scholar

    [18]

    Yu M F, Dyer M J, Ruoff R S 2001 J. Appl. Phys. 89 4554Google Scholar

    [19]

    Liu B, Yu M F, Huang Y G 2004 Phys. Rev. B 70 2806

    [20]

    Xiao J, Liu B, Huang Y, Zuo J, Hwang K C, Yu M F 2007 Nanotechnology 18 395703Google Scholar

    [21]

    Xiao S G, Liu S L, Song M M, Ang N, Zhang H L 2020 Multibody Sys. Dyn. 48 451Google Scholar

    [22]

    Xiao S G, Liu S L, Wang H Z, Lin Y, Song M M, Zhang H L 2020 Nonlinear Dyn. 100 1203Google Scholar

    [23]

    Zhang D H, Liu Z K, Yang H B, Liu A M 2018 Mol. Simul. 44 648Google Scholar

    [24]

    Zhang D H, Yang H B, Liu Z K, Liu A M 2018 J. Alloys Compd. 765 140Google Scholar

    [25]

    Andriotis A, Menon M, Gibson H 2008 IEEE Sens. J. 8 910Google Scholar

    [26]

    Cui J L, Zhang J W, Wang X W, Theogene B, Wang W J, Tohmyoh H, He X Q, Mei X S 2019 J. Phys. Chem. C 123 19693Google Scholar

    [27]

    Cui J L, Ren X Y, Mei H H, Wang X W, Zhang J W, Fan Z J, Wang W J, Tohmyoh H, Mei X S 2020 Appl. Surf. Sci. 512 145696Google Scholar

    [28]

    Xie J, Xue Q, Yan K, Chen H, Xia D, Dong M 2009 J. Phys. Chem. C 113 14747

    [29]

    Yan K Y, Xue Q Z, Xia D, Chen H J, Xie J, Dong M D 2009 ACS Nano 3 2235Google Scholar

    [30]

    Yan K Y, Xue Q Z, Zheng Q B, Xia D, Xie J 2009 J. Phys. Chem. C 113 3120Google Scholar

    [31]

    Ling C C, Xue Q Z, Jing N N, Xia D 2012 RSC Adv. 2 7549Google Scholar

    [32]

    Mozos J, Ordejón P, Brandbyge M, Taylor J, Stokbro K 2003 Advances in Quantum Chemistry (Salt Lake City: Academic Press) pp299−314

    [33]

    Chen W, Li H, He Y Z 2014 Phys. Chem. Chem. Phys. 16 7907Google Scholar

    [34]

    李瑞, 密俊霞 2017 物理学报 66 046101Google Scholar

    Li R, Mi J X 2017 Acta Phys. Sin. 66 046101Google Scholar

    [35]

    Akita S, Nishijima H, Nakayama Y 2000 J. Phys. D: Appl. Phys. 33 2673Google Scholar

    [36]

    Yang Q 2020 Micro-Nano Lett. 15 883Google Scholar

    [37]

    Maiti A, Ricca A 2004 Chem. Phys. Lett. 395 7Google Scholar

    [38]

    Frank S P, Poncharal P, Wang Z L, Heer W A D 1998 Science 280 1744Google Scholar

    [39]

    Xiang L, Wang Y W, Zhang P P, Fong X Y, Wei X L, Hu Y F 2018 Nanoscale 10 21857Google Scholar

    [40]

    Xiao M M, Lin Y X, Xu L, Deng B, Peng H L, Peng L M, Zhang Z Y 2020 Adv. Electron. Mater. 6 2000258Google Scholar

    [41]

    Zhang Z Y, Liang X L, Wang S, Yao K, Hu Y F, Zhu Y Z, Chen Q, Zhou W W, Li Y, Yao Y G, Zhang J, Peng L M 2007 Nano Lett. 7 3603Google Scholar

    [42]

    Park C J, Kim Y H, Chang K J 1999 Phys. Rev. B 60 10656Google Scholar

    [43]

    Lu J Q, Wu J, Duan W H, Liu F, Zhu B F, Gu B L 2003 Phys. Rev. Lett. 90 156601Google Scholar

    [44]

    Lu J Q, Wu J, Duan W H, Gu B L, Johnson H T 2005 J. Appl. Phys. 97 56

    [45]

    Giusca C E, Tison Y, Silva S R P 2008 Nano Lett. 8 3350Google Scholar

  • 图 1  多壁碳管及其分子动力学模型 (a) 碳纳米管和AFM悬臂梁的SEM图像; (b) 原子模型侧视图; (c) 主视图; (d) 范德瓦耳斯能差值

    Figure 1.  Picked CNT and its molecular dynamic model; (a) SEM images of CNT and AFM cantilever; (b) side view; (c) front view; (d) vdW energy reduction.

    图 2  碳纳米管与金界面的能量变化 (a)总能; (b)势能; (c)内能; (d)动能

    Figure 2.  Energy changing at the interface of CNT and gold durface: (a) Total energy; (b) potential energy; (c) internal energy; (d) kinetic energy.

    图 3  碳纳米管与金属表面的接触模式 (a)水平接触; (b)垂直接触

    Figure 3.  Contact model between CNT and metal surface: (a) Horizontal contact; (b) vertical contact.

    图 4  碳纳米管与金表面在不同初始间距下的界面接触构型及范德瓦耳斯能差 初始间距: (a) 1.1999 nm; (b) 0.9489 nm; (c) 0.1378 nm; 平衡间距: (d) 1.16 nm; (e) 0.3081 nm; (f) 0.2933 nm; 范德瓦耳斯能差: (g) 1.1999 nm; (b) 0.9489 nm; (c) 0.1378 nm

    Figure 4.  Contact configuration and Van der Waals energy of CNT with different initial gap: (a) Initial separate gap of 1.1999 nm; (b) 0.9489 nm; (c) 0.1378 nm; (d) final gap of 1.16 nm; (e) 0.3081 nm; (f) 0.2933 nm; Van der Waals energy at distance of (g) 1.1999 nm; (b) 0.9489 nm; (c) 0.1378 nm.

    图 5  碳纳米管与不同金属间的界面接触构型和范德瓦耳斯能差值. 接触构型: (a) 铂; (c) 铝; (e)钨; 范德瓦耳斯能差值: (d) 铂; (e) 铝; (f) 钨

    Figure 5.  Contact behavior and VdW energy reduction of three-walled CNT on different metal: (a) Pt; (c) Al; (c) W; VdW energy reduction contacting with different metal: (d) Pt; (e) Al; (f) W.

    图 6  碳纳米管与金在不同接触长度下的接触构型和范德瓦耳斯能差值. 接触构型: (a) 2.46 nm; (b) 3.689 nm; (c) 4.919 nm; 范德瓦耳斯能差值: (d) 2.46 nm; (e) 3.689 nm; (f) 4.919 nm

    Figure 6.  Contact behavior and VdW energy reduction with different contact length. Contact behavior: (a) 2.46 nm; (b) 3.689 nm; (c) 4.919 nm; and VdW energy reduction under contact length: (d) 2.46 nm; (e) 3.689 nm; (f) 4.919 nm.

    图 7  碳纳米管与金表面垂直接触下的接触构型和范德瓦耳斯能差值  接触构型:(a) 两端开口; (b) 一端开口和闭口; (c) 两端闭口; 范德瓦耳斯能差值: (d) 两端开口; (e) 一端开口和闭口; (f) 两端闭口

    Figure 7.  Contact behavior in vertical contact and VdW energy reduction: (a) 2 open ends; (b) capped and open end; (c) 2 capped ends; VdW energy reduction with: (d) 2 open ends; (e) capped and open end; (f) 2 capped ends.

    图 8  初始和变形的端部开口的三壁碳纳米管的浓度分布 (a) xz平面上; (b) x方向; (c) yz平面上; (d) y方向; (e) xz平面上; (f) z方向

    Figure 8.  Concentration profile of initial and collapsed capped-ends three-walled CNT: (a) xz plane; (b) x; (c) yz plane; (d) y; (e) xz plane; (f) z.

    图 9  初始和变形的端部闭口的三壁碳纳米管的浓度分布 (a) xz平面上; (b) x方向; (c) yz平面上; (d) y方向; (e) xz平面上; (f) z方向

    Figure 9.  Concentration profile of initial and collapsed open-ends three-walled CNT: (a) xz plane; (b) x; (c) yz plane; (d) y; (e) xz plane; (f) z.

    图 10  三壁闭口碳纳米管的场效应晶体管 (a)原子模型; (b)正视图; (c)侧视图; (d)俯视图

    Figure 10.  Three-walled capped-ends CNTFET: (a) Molecular dynamic modeling of CNTFET; (b) front view; (c) side view; (d) top view

    图 11  三壁开口碳纳米管场效应晶体管 (a)原子模型; (b)正视图; (c)侧视图; (d)俯视图

    Figure 11.  Three-walled open-ends CNTFET: (a) Molecular dynamic modeling of CNTFET; (b) front view; (c) side view; (d) top view

    图 12  单壁两端闭口碳纳米管场效应晶体管 (a)原子模型; (b)正视图; (c)侧视图; (d)俯视图

    Figure 12.  Single-walled open-ends CNTFET: (a) Molecular dynamic modeling of CNTFET; (b) front view; (c) side view; (d) top view.

    图 13  两端开口或闭口碳纳米管与钯电极接触的构型和范德瓦耳斯能差值  接触构型:(a)单壁开口; (b)单壁闭口; (c)三壁开口; 范德瓦耳斯能差值: (d)单壁开口; (e)单壁闭口; (f)三壁开口

    Figure 13.  Interface configuration and Van der Waals energy of CNTs contacting with palladium: (a) Single-walled open-ends CNT; (b) single-walled closed-ends CNT; (c) three-walled open-ends CNT; Van der Waals energy of (d) single-walled open-ends CNT; (e) single-walled closed-ends CNT; (f) three-walled open-ends CNT.

    表 1  多壁碳纳米管与金表面接触系统径向压缩变形前后的能量组成

    Table 1.  The energy components of multi-walled CNT and gold surface before and after collapse.

    能量组成初始状态稳定状态能量差值
    总能/Mcal/mol144.3约143–1.3
    势能/Mcal/mol约140约138.7–1.3
    动能/Mcal/mol4.5 ± 0.034.5 ± 0.03
    内能/Mcal/mol约139.3约139.50.2
    范德瓦耳斯能/Mcal/mol约0.7约–0.83–1.53
    DownLoad: CSV

    表 2  多壁碳纳米管与金表面上径向压缩变形前后的初始间距及其对应能量

    Table 2.  VDW energy of multi-walled CNT and gold surface at different original distance.

    能量对应间距初始状态最终状态范德瓦
    耳斯
    能差
    能量/
    (Mcal/mol)
    (间距/ nm)
    约0.7(1.1999)约0.7(1.16)0
    约0.7(0.9489)–0.8(0.3081)1.5
    –3.6(0.1378)–3.6(0.2933)0
    DownLoad: CSV

    表 3  多壁碳纳米管与金表面在不同金属种类、接触长度和接触模式下范德瓦耳斯能差

    Table 3.  VDW energy of MWCNT and gold surface with different metal, contact length and model.

    能量/(Mcal/mol)金属种类水平接触长度/nm垂直接触
    2.463.6894.919 两端开口开口封闭两端封闭
    范德瓦耳斯能差21.151.05 1.21.82.4 00.50
    DownLoad: CSV

    表 4  多壁碳纳米管最外层管壁与金表面的接触距离

    Table 4.  Contacting distance of outmost layer of MWCNT with gold surface.

    碳纳米
    管结构
    源漏初始间距/nm源漏最终
    间距/nm
    栅极初始
    间距/nm
    栅极最终
    间距/nm
    三壁两
    端闭口
    0.63740.290.92330.36
    三壁两
    端开口
    0.67290.32040.9320.3235
    单壁两
    端开口
    0.670.30.930.34
    DownLoad: CSV
  • [1]

    Yu M F, Dyer M J, Skidmore G D, Rohrs H W, Lu X, Ausman K D, Ehr J R V, Ruoff R S 1999 Nanotechnology 10 244Google Scholar

    [2]

    Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F, S. R R 2000 Science 287 637Google Scholar

    [3]

    Ding H Y, Shi C Y, Li M, Zhan Y, Wang M Y, Wang Y Q, Tao C, Sun L N, Fukuda T 2018 Sensors 18 1137Google Scholar

    [4]

    王亚洲, 马立, 杨权, 耿松超, 林旖旎, 陈涛, 孙立宁 2020 物理学报 69 068801Google Scholar

    Wang Y Z, Ma L, Yang Q, Geng S C, Lin Y N, Chen T, Sun L N 2020 Acta Phys. Sin. 69 068801Google Scholar

    [5]

    Zhang Z Y, Wang S, Ding L, Liang X L, Xu H L, Shen J, Chen Q, Cui R L, Li Y, Peng L M 2008 Appl. Phys. Lett. 92 133117Google Scholar

    [6]

    Xie S, Jiao N, Tung S, Liu L 2015 Micromachines 6 1317Google Scholar

    [7]

    Yu N, Shi Q, Nakajima M, Wang H P, Yang Z, Sun L N, Huang Q, Fukuda T 2017 J. Micromech. Microeng. 27 105007Google Scholar

    [8]

    Fukuda T, Arai F, Dong L 2003 Proc. IEEE 91 1803

    [9]

    Yang Z, Chen T, Wang Y Q, Sun L N, Fukuda T 2016 Micro-Nano Lett. 11 645Google Scholar

    [10]

    杨权, 马立, 杨斌, 丁汇洋, 陈涛, 杨湛, 孙立宁, 福田敏男 2018 物理学报 67 136801Google Scholar

    Yang Q, Ma L, Yang B, Ding H Y, Chen T, Yang Z, Sun L N, Toshio F 2018 Acta Phys. Sin. 67 136801Google Scholar

    [11]

    Liu P, Nakajima M, Yang Z, Fukuda T, Arai F 2009 Proc. IMechE Part N: J. Nanoengineering and Nanosystems 222 33

    [12]

    Yu N, Nakajima M, Shi Q, Yang Z, Wang H P, Sun L N, Huang Q, Fukuda T 2017 Scanning 2017 5910734

    [13]

    Shi Q, Yang Z, Guo Y N, Wang H P, Sun L N, Huang Q, Fukuda T 2017 IEEE/ASME Trans. Mechatron. 22 845Google Scholar

    [14]

    Chen Q, Wang S, Peng L M 2006 Nanotechnology 17 1087Google Scholar

    [15]

    Martel R, Schmidt T, Shea H R, Hertel T, Avouris P 1998 Appl. Phys. Lett. 73 2447Google Scholar

    [16]

    Cui J L, Zhang J W, He X Q, Mei X S, Wang W J, Yang X J, Xie H, Yang L J, Wang Y 2017 J. Nanopart. Res. 19 110Google Scholar

    [17]

    Gao G H, Çagin T, Goddard W A 1998 Nanotechnology 9 184Google Scholar

    [18]

    Yu M F, Dyer M J, Ruoff R S 2001 J. Appl. Phys. 89 4554Google Scholar

    [19]

    Liu B, Yu M F, Huang Y G 2004 Phys. Rev. B 70 2806

    [20]

    Xiao J, Liu B, Huang Y, Zuo J, Hwang K C, Yu M F 2007 Nanotechnology 18 395703Google Scholar

    [21]

    Xiao S G, Liu S L, Song M M, Ang N, Zhang H L 2020 Multibody Sys. Dyn. 48 451Google Scholar

    [22]

    Xiao S G, Liu S L, Wang H Z, Lin Y, Song M M, Zhang H L 2020 Nonlinear Dyn. 100 1203Google Scholar

    [23]

    Zhang D H, Liu Z K, Yang H B, Liu A M 2018 Mol. Simul. 44 648Google Scholar

    [24]

    Zhang D H, Yang H B, Liu Z K, Liu A M 2018 J. Alloys Compd. 765 140Google Scholar

    [25]

    Andriotis A, Menon M, Gibson H 2008 IEEE Sens. J. 8 910Google Scholar

    [26]

    Cui J L, Zhang J W, Wang X W, Theogene B, Wang W J, Tohmyoh H, He X Q, Mei X S 2019 J. Phys. Chem. C 123 19693Google Scholar

    [27]

    Cui J L, Ren X Y, Mei H H, Wang X W, Zhang J W, Fan Z J, Wang W J, Tohmyoh H, Mei X S 2020 Appl. Surf. Sci. 512 145696Google Scholar

    [28]

    Xie J, Xue Q, Yan K, Chen H, Xia D, Dong M 2009 J. Phys. Chem. C 113 14747

    [29]

    Yan K Y, Xue Q Z, Xia D, Chen H J, Xie J, Dong M D 2009 ACS Nano 3 2235Google Scholar

    [30]

    Yan K Y, Xue Q Z, Zheng Q B, Xia D, Xie J 2009 J. Phys. Chem. C 113 3120Google Scholar

    [31]

    Ling C C, Xue Q Z, Jing N N, Xia D 2012 RSC Adv. 2 7549Google Scholar

    [32]

    Mozos J, Ordejón P, Brandbyge M, Taylor J, Stokbro K 2003 Advances in Quantum Chemistry (Salt Lake City: Academic Press) pp299−314

    [33]

    Chen W, Li H, He Y Z 2014 Phys. Chem. Chem. Phys. 16 7907Google Scholar

    [34]

    李瑞, 密俊霞 2017 物理学报 66 046101Google Scholar

    Li R, Mi J X 2017 Acta Phys. Sin. 66 046101Google Scholar

    [35]

    Akita S, Nishijima H, Nakayama Y 2000 J. Phys. D: Appl. Phys. 33 2673Google Scholar

    [36]

    Yang Q 2020 Micro-Nano Lett. 15 883Google Scholar

    [37]

    Maiti A, Ricca A 2004 Chem. Phys. Lett. 395 7Google Scholar

    [38]

    Frank S P, Poncharal P, Wang Z L, Heer W A D 1998 Science 280 1744Google Scholar

    [39]

    Xiang L, Wang Y W, Zhang P P, Fong X Y, Wei X L, Hu Y F 2018 Nanoscale 10 21857Google Scholar

    [40]

    Xiao M M, Lin Y X, Xu L, Deng B, Peng H L, Peng L M, Zhang Z Y 2020 Adv. Electron. Mater. 6 2000258Google Scholar

    [41]

    Zhang Z Y, Liang X L, Wang S, Yao K, Hu Y F, Zhu Y Z, Chen Q, Zhou W W, Li Y, Yao Y G, Zhang J, Peng L M 2007 Nano Lett. 7 3603Google Scholar

    [42]

    Park C J, Kim Y H, Chang K J 1999 Phys. Rev. B 60 10656Google Scholar

    [43]

    Lu J Q, Wu J, Duan W H, Liu F, Zhu B F, Gu B L 2003 Phys. Rev. Lett. 90 156601Google Scholar

    [44]

    Lu J Q, Wu J, Duan W H, Gu B L, Johnson H T 2005 J. Appl. Phys. 97 56

    [45]

    Giusca C E, Tison Y, Silva S R P 2008 Nano Lett. 8 3350Google Scholar

  • [1] Liu Zi-Yi, Chu Fu-Qiang, Wei Jun-Jun, Feng Yan-Hui. Interface thermal conductance and phonon thermal transport characteristics of diamond/carbon nanotube interface. Acta Physica Sinica, 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [2] Qin Cheng-Long, Luo Xiang-Yan, Xie Quan, Wu Qiao-Dan. Molecular dynamics study of thermal conductivity of carbon nanotubes and silicon carbide nanotubes. Acta Physica Sinica, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [3] Li Rui, Mi Jun-Xia. Influence of hydroxyls at interfaces on motion and friction of carbon nanotube by molecular dynamics simulation. Acta Physica Sinica, 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [4] Li Yang, Song Yong-Shun, Li Ming, Zhou Xin. Simulation studies on the diffusion of water solitons in carbon nanotube. Acta Physica Sinica, 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [5] Zeng Yong-Hui, Jiang Wu-Gui, Qin Qing-Hua. Influence of helical rise on the self-excited oscillation behavior of zigzag @ zigzag double-wall carbon nanotubes. Acta Physica Sinica, 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [6] Han Dian-Rong, Wang Lu, Luo Cheng-Lin, Zhu Xing-Feng, Dai Ya-Fei. Torsional mechanical properties of (n, n)-(2n, 0) carbon nanotubes heterojunction. Acta Physica Sinica, 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [7] Cao Ping, Luo Cheng-Lin, Chen Gui-Hu, Han Dian-Rong, Zhu Xing-Feng, Dai Ya-Fei. Flux controllable pumping of water molecules in a double-walled carbon nanotube. Acta Physica Sinica, 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [8] Yang Cheng-Bing, Xie Hui, Liu Chao. Molecular dynamics simulation of average velocity of lithium iron across the end of carbon nanotube. Acta Physica Sinica, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [9] Jiao Xue-Jing, Ouyang Fang-Ping, Peng Sheng-Lin, Li Jian-Ping, Duan Ji-An, Hu You-Wang. Formation of all carbon heterojunction: through the docking of carbon nanotubes. Acta Physica Sinica, 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [10] Du Yu-Guang, Zhang Kai-Wang, Peng Xiang-Yang, Jin Fu-Bao, Zhong Jian-Xin. Helicities and thermostabilities of Ni nanowires in the carbon nanotubes. Acta Physica Sinica, 2012, 61(17): 176102. doi: 10.7498/aps.61.176102
    [11] Xu Kui, Wang Qing-Song, Tan Bin, Chen Ming-Xuan, Miao Ling, Jiang Jian-Jun. Molecular dynamic of selectivity and permeation based on deformed carbon nanotube. Acta Physica Sinica, 2012, 61(9): 096101. doi: 10.7498/aps.61.096101
    [12] Zhang Zhong-Qiang, Ding Jian-Ning, Liu Zhen, Xue Yi-Bin, Cheng Guang-Gui, Ling Zhi-Yong. Analysis of Interfacial Mechanical Properties of Carbon NanotubePolymer Composite. Acta Physica Sinica, 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [13] Zuo Xue-Yun, Li Zhong-Qiu, Wang Wei, Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Nanowelding of contact between carbon nanotubesand gold electrodes. Acta Physica Sinica, 2011, 60(6): 066103. doi: 10.7498/aps.60.066103
    [14] Meng Li-Jun, Xiao Hua-Ping, Tang Chao, Zhang Kai-Wang, Zhong Jian-Xin. Formation and thermal stability of compound stucture of carbon nanotube and silicon nanowire. Acta Physica Sinica, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [15] Zhang Zhong-Qiang, Zhang Hong-Wu, Wang Lei, Zheng Yong-Gang, Wang Jin-Bao. Pressure control model for transport of liquid mercury in carbon nanotubes. Acta Physica Sinica, 2008, 57(2): 1019-1024. doi: 10.7498/aps.57.1019
    [16] Xin Hao, Han Qiang, Yao Xiao-Hu. Influences of atom vacancies on buckling properties of armchair single-walled carbon nanotubes shown by molecular dynamics simulation. Acta Physica Sinica, 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [17] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [18] Li Rui, Hu Yuan-Zhong, Wang Hui, Zhang Yu-Jun. Molecular dynamics simulation of motion of single-walled carbon nanotubes on graphite substrate. Acta Physica Sinica, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [19] Bao Wen-Xing, Zhu Chang-Chun. Study of thermal conduction of carbon nanotube by molecular dynamics. Acta Physica Sinica, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [20] Bao Wen-Xing, Zhu Chang-Chun, Cui Wan-Zhao. Study of structure optimization of carbon nanotubes using hybrid genetic algorithm based on clonal selection principle. Acta Physica Sinica, 2005, 54(11): 5281-5287. doi: 10.7498/aps.54.5281
Metrics
  • Abstract views:  7562
  • PDF Downloads:  145
  • Cited By: 0
Publishing process
  • Received Date:  23 December 2020
  • Accepted Date:  10 March 2021
  • Available Online:  14 May 2021
  • Published Online:  20 May 2021

/

返回文章
返回