-
Based on Stone-Wales (SW) defect evolution theory and molecular dynamics, we simulate the docking process of two caped carbon nanotubes (CNTs) of different types to form a heterojunction using Monte Carlo methods. First, an algorithm for a fast simulation of the cap change in CNTs is put forward and the cap formation of single CNTs with open ends is simulated, by applying this method. SW defect evolution is designed as a leap change simulation of these caps, represents C-C bond formation and breakage, while molecular dynamics is used to simulate the gradient change of the relative bond distance between the C atoms. The coalescence process of forming heterojunction is also studied here. These simulations show that the process of docking is first to generate a large number of defects, which will precipitate the coalescence, then many defects disappear through the compound, finally the remaining defects transfer to the ends of this heterojunction in the form of pentagon/heptagon rings, thus leading to the reduced overall energy.
-
Keywords:
- carbon nanotube /
- Monte Carlo /
- stone-wales defect /
- molecular dynamic
[1] Iijima S, Ichihashi T 1993 Nature 363 603
[2] Avouris P 2009 Phys. Today 62 34
[3] Avouris P, Appenzeller J, Martel R, Wind S J 2003 Proc. IEEE 91 1772
[4] Yang Z, Shi Y, Gu S L , Shen B, Zhang R, Zheng Y D 2002 Physics 31 624 (in Chinese) [杨铮, 施毅, 顾书林, 沈波, 张荣, 郑有炓 2002 物理 31 624]
[5] Hernandez E, Meunier V, Smith B W, Rurali R, Terrones H, Nardelli M B, Charlier J C 2003 Nano Lett. 3 1037
[6] Ohta Y, Okamoto Y, Page A J, Irle S, Morokuma K 2009 ACS Nano 3 3413
[7] Zhang Q M, Wells J, Gong X, Zhang Z 2004 Phys. Rev. B 69 205413
[8] Zhao Y, Yakobson B, Smalley R E 2002 Phys. Rev. Lett. 88 185501
[9] Ding F, Xu Z, Yakobson B, Young R, Kinloch I, Cui S, Monthioux M 2010 Phys. Rev. B 82 041403
[10] Smith B W, Monthioux M, Luzzi D E 1998 Nature 396 323
[11] Neyts E C, Shibuta Y, van Duin A C T, Bogaerts A 2010 ACS Nano 4 6665
[12] Ohta Y, Irle S, Morokuma K 2008 ACS Nano 2 1437
[13] Narlikar A V, Fu Y Y E 2009 Oxford Handbook of Nanoscience and Technology (Oxford: Oxford Univ. Press) p68
[14] Ewels C P, Heggie M I, Briddon P R 2002 Chem. Phys. Lett. 351 178
[15] Burgos J C, Reyna H, Yakobson B I, Balbuena P B 2010 J. Phys. Chem. C 114 6952
[16] Kim Y H, Lee I H, Chang K J, Lee S 2003 Phys. Rev. Lett. 90 065501
[17] Zhao Y, Smalley R, Yakobson B I 2002 Phys. Rev. B 66 195409
[18] Han S, Yoon M, Berber S, Park N, Osawa E, Ihm J, Tománek D 2004 Phys. Rev. B 70 113402
[19] Ma J, Alfé D, Michaelides A, Wang E 2009 Phys. Rev. B 80 033407
[20] LI F, Bai S, Zheng H, Zhou L G, Cheng H M 2001 New Carbon Mater. 16 73 (in Chinese) [李峰, 白朔, 郑宏, 周龙光, 成会明 2001 新型碳材料 16 73]
[21] Li M L, Lin F, Chen Y 2013 Acta Phys. Sin. 62 016102 (in Chinese) [李明林, 林凡, 陈越 2013物理学报 62 016102]
[22] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H 1953 J. Chem. Phys. 21 6
[23] Li L X, Su J B, Wu Y, Zhu X F, Wang Z G 2012 Acta Phys. Sin. 61 036401 (in Chinese) [李论雄, 苏江滨, 吴燕, 朱贤方, 王占国 2012 物理学报 61 036401]
-
[1] Iijima S, Ichihashi T 1993 Nature 363 603
[2] Avouris P 2009 Phys. Today 62 34
[3] Avouris P, Appenzeller J, Martel R, Wind S J 2003 Proc. IEEE 91 1772
[4] Yang Z, Shi Y, Gu S L , Shen B, Zhang R, Zheng Y D 2002 Physics 31 624 (in Chinese) [杨铮, 施毅, 顾书林, 沈波, 张荣, 郑有炓 2002 物理 31 624]
[5] Hernandez E, Meunier V, Smith B W, Rurali R, Terrones H, Nardelli M B, Charlier J C 2003 Nano Lett. 3 1037
[6] Ohta Y, Okamoto Y, Page A J, Irle S, Morokuma K 2009 ACS Nano 3 3413
[7] Zhang Q M, Wells J, Gong X, Zhang Z 2004 Phys. Rev. B 69 205413
[8] Zhao Y, Yakobson B, Smalley R E 2002 Phys. Rev. Lett. 88 185501
[9] Ding F, Xu Z, Yakobson B, Young R, Kinloch I, Cui S, Monthioux M 2010 Phys. Rev. B 82 041403
[10] Smith B W, Monthioux M, Luzzi D E 1998 Nature 396 323
[11] Neyts E C, Shibuta Y, van Duin A C T, Bogaerts A 2010 ACS Nano 4 6665
[12] Ohta Y, Irle S, Morokuma K 2008 ACS Nano 2 1437
[13] Narlikar A V, Fu Y Y E 2009 Oxford Handbook of Nanoscience and Technology (Oxford: Oxford Univ. Press) p68
[14] Ewels C P, Heggie M I, Briddon P R 2002 Chem. Phys. Lett. 351 178
[15] Burgos J C, Reyna H, Yakobson B I, Balbuena P B 2010 J. Phys. Chem. C 114 6952
[16] Kim Y H, Lee I H, Chang K J, Lee S 2003 Phys. Rev. Lett. 90 065501
[17] Zhao Y, Smalley R, Yakobson B I 2002 Phys. Rev. B 66 195409
[18] Han S, Yoon M, Berber S, Park N, Osawa E, Ihm J, Tománek D 2004 Phys. Rev. B 70 113402
[19] Ma J, Alfé D, Michaelides A, Wang E 2009 Phys. Rev. B 80 033407
[20] LI F, Bai S, Zheng H, Zhou L G, Cheng H M 2001 New Carbon Mater. 16 73 (in Chinese) [李峰, 白朔, 郑宏, 周龙光, 成会明 2001 新型碳材料 16 73]
[21] Li M L, Lin F, Chen Y 2013 Acta Phys. Sin. 62 016102 (in Chinese) [李明林, 林凡, 陈越 2013物理学报 62 016102]
[22] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H 1953 J. Chem. Phys. 21 6
[23] Li L X, Su J B, Wu Y, Zhu X F, Wang Z G 2012 Acta Phys. Sin. 61 036401 (in Chinese) [李论雄, 苏江滨, 吴燕, 朱贤方, 王占国 2012 物理学报 61 036401]
Catalog
Metrics
- Abstract views: 6505
- PDF Downloads: 547
- Cited By: 0