-
The static and dynamic mechanical characteristics of carbon nanotubes with double and multiple vacancy defects are simulated by the molecular dynamics method. Firstly, the effects of diatomic and polyatomic vacancy defects on the quasi-static mechanical properties of carbon nanotubes are discussed. Then, the effects of defects and axial pre-stress on the dynamics of C60 molecular oscillation in carbon nano-peapods are discussed. The results show that the ultimate stress, ultimate strain and elastic modulus of carbon nanotube containing different types of diatomic vacancies are significantly reduced as compared with those of non-defective carbon nanotubes. When the carbon nanotubes have many defective atoms and the defects are connected together to form a crack, the axial compressive properties of the carbon nanotubes are greatly reduced. Compared with the circumferential development of cracks, the cracks along the axis greatly reduce the compressive capacity of carbon nanotubes, which is similar to that of shell models with cracks. The oscillation frequency of C60 molecular in defective carbon nano-peapods is affected by the number of missing atoms. The single vacancy defect increases the oscillation frequency of C60 molecule, while with the further increase of vacancy number, the oscillation frequency of C60 molecule decreases gradually. When the defective carbon nano-peapod has axial tensile or compressive pre-stress, the oscillation of the C60 molecule is affected not only by the defects, but also by the axial pre-stress, which makes the oscillation of C60 molecule more complicated.
-
Keywords:
- carbon nanotubes /
- carbon nano-peapods /
- defects /
- static and dynamic mechanical characteristics
[1] Iijima S 1991 Nature 354 56Google Scholar
[2] Krishnan A, Dujardin E, Ebbesen T W 1998 Phys. Rev. B 58 14013Google Scholar
[3] Berber S, Kwon Y K, Tomanek D 2000 Phys. Rev. Lett. 84 4613Google Scholar
[4] Rinzler A G, Hafner J H, Nikolaev P, Lou L, Kim S G, Tomanek D, Nordlander P, Colbert D T, Smalley R E 1995 Science 269 1550Google Scholar
[5] Popov V N 2004 Mater. Sci. Eng. R 43 61Google Scholar
[6] Harris P J F, Hernandez E, Yakobson B I 2004 Am. J. Phys. 72 413Google Scholar
[7] Stone A J, Wales D J 1986 Chem. Phys. Lett. 128 501Google Scholar
[8] Nardelli M B, Yakobson B I, Bernholc J 1998 Phys. Rev. B 57 4277Google Scholar
[9] Hirai Y, Nishimaki S, Mori H, Kimoto Y, Akita S, Nakayama Y, Tanaka Y 2003 Jpn. J. Appl. Phys. 42 4120Google Scholar
[10] 辛浩, 韩强, 姚小虎 2008 物理学报 57 4391Google Scholar
Xin H, Han Q, Yao X H 2008 Acta Phys. Sin. 57 4391Google Scholar
[11] 袁剑辉, 程玉民, 张振华 2009 物理学报 58 2578Google Scholar
Yuan J H, Cheng Y M, Zhang Z H 2009 Acta Phys. Sin. 58 2578Google Scholar
[12] Zhang Y Y, Xiang Y, Wang C M 2009 J. Appl. Phys. 106 113503Google Scholar
[13] Kulathunga D D T K, Ang K K, Reddy J N 2010 J. Phys.: Condens. Matter 22 345301Google Scholar
[14] 王锋, 曾祥华, 徐秀莲 2002 物理学报 51 1778Google Scholar
Wang F, Zeng X H, Xu X L 2002 Acta Phys. Sin. 51 1778Google Scholar
[15] Liu P, Zhang Y W, Lu C 2005 J. Appl. Phys. 97 094313Google Scholar
[16] Song H Y, Zha X W 2009 Phys. Lett. A 373 1058Google Scholar
[17] 崔柳, 冯妍卉, 檀鹏, 张欣欣 2015 科学通报 60 1414
Cui L, Feng Y H, Tan P, Zhang X X 2015 Chin. Sci. Bull. 60 1414
[18] 方炜, 王磊 2018 材料导报 32 164
Fang W, Wang L 2018 Mater. Rev. 32 164
[19] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[20] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S 2002 J. Phys.: Condens. Matter 14 783Google Scholar
[21] Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar
[22] Lennard-Jones J E, Dent B M 1926 Proc. R. Soc. A 112 230Google Scholar
[23] Girifalco L A, Hodak M, Lee R S 2000 Phys. Rev. B 62 13104Google Scholar
[24] Rafizadeh H A 1974 Physica 74 135Google Scholar
[25] Cox B J, Thamwattana N, Hill J M 2007 Proc. R. Soc. A 463 461Google Scholar
[26] Cox B J, Thamwattana N, Hill J M 2007 Proc. R. Soc. A 463 477Google Scholar
-
图 6 含多原子空位缺陷碳纳米管在轴向荷载作用下屈曲失稳构型 (a) 沿轴向分布的含多原子空位缺陷管; (b) 沿周向分布的含多原子空位缺陷管
Figure 6. Buckling instability configuration of carbon nanotubes with polyatomic vacancy defects under axial loading: (a) Carbon nanotubes with polyatomic vacancy defects distributed along the axial direction; (b) carbon nanotubes with polyatomic vacancy defects distributed along the circumferential direction.
表 1 含双原子空位缺陷碳纳米管
Table 1. Carbon nanotubes containing diatomic vacancy defects.
编号 缺陷类型 间隔碳原子数 1 缺失1, 2位置原子 0 2 缺失1, 3位置原子 1 3 缺失1, 4位置原子 2 4 缺失1, 5位置原子 1 5 缺失1, 6 位置原子 0 6 缺失3, 6位置原子 2 表 2 轴压下双原子空位缺陷对碳纳米管力学性能影响
Table 2. Effect of diatomic vacancy defects on mechanical properties of carbon nanotubes under axial compression.
编号 极限应力/GPa 极限应变/% 弹性模量/GPa 1 27.96 3.76 743.6 2 28.26 4.00 706.5 3 28.28 4.00 707.0 4 29.06 4.24 685.4 5 31.21 4.20 743.1 6 30.34 4.30 705.6 7 40.86 4.85 842.5 -
[1] Iijima S 1991 Nature 354 56Google Scholar
[2] Krishnan A, Dujardin E, Ebbesen T W 1998 Phys. Rev. B 58 14013Google Scholar
[3] Berber S, Kwon Y K, Tomanek D 2000 Phys. Rev. Lett. 84 4613Google Scholar
[4] Rinzler A G, Hafner J H, Nikolaev P, Lou L, Kim S G, Tomanek D, Nordlander P, Colbert D T, Smalley R E 1995 Science 269 1550Google Scholar
[5] Popov V N 2004 Mater. Sci. Eng. R 43 61Google Scholar
[6] Harris P J F, Hernandez E, Yakobson B I 2004 Am. J. Phys. 72 413Google Scholar
[7] Stone A J, Wales D J 1986 Chem. Phys. Lett. 128 501Google Scholar
[8] Nardelli M B, Yakobson B I, Bernholc J 1998 Phys. Rev. B 57 4277Google Scholar
[9] Hirai Y, Nishimaki S, Mori H, Kimoto Y, Akita S, Nakayama Y, Tanaka Y 2003 Jpn. J. Appl. Phys. 42 4120Google Scholar
[10] 辛浩, 韩强, 姚小虎 2008 物理学报 57 4391Google Scholar
Xin H, Han Q, Yao X H 2008 Acta Phys. Sin. 57 4391Google Scholar
[11] 袁剑辉, 程玉民, 张振华 2009 物理学报 58 2578Google Scholar
Yuan J H, Cheng Y M, Zhang Z H 2009 Acta Phys. Sin. 58 2578Google Scholar
[12] Zhang Y Y, Xiang Y, Wang C M 2009 J. Appl. Phys. 106 113503Google Scholar
[13] Kulathunga D D T K, Ang K K, Reddy J N 2010 J. Phys.: Condens. Matter 22 345301Google Scholar
[14] 王锋, 曾祥华, 徐秀莲 2002 物理学报 51 1778Google Scholar
Wang F, Zeng X H, Xu X L 2002 Acta Phys. Sin. 51 1778Google Scholar
[15] Liu P, Zhang Y W, Lu C 2005 J. Appl. Phys. 97 094313Google Scholar
[16] Song H Y, Zha X W 2009 Phys. Lett. A 373 1058Google Scholar
[17] 崔柳, 冯妍卉, 檀鹏, 张欣欣 2015 科学通报 60 1414
Cui L, Feng Y H, Tan P, Zhang X X 2015 Chin. Sci. Bull. 60 1414
[18] 方炜, 王磊 2018 材料导报 32 164
Fang W, Wang L 2018 Mater. Rev. 32 164
[19] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[20] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S 2002 J. Phys.: Condens. Matter 14 783Google Scholar
[21] Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar
[22] Lennard-Jones J E, Dent B M 1926 Proc. R. Soc. A 112 230Google Scholar
[23] Girifalco L A, Hodak M, Lee R S 2000 Phys. Rev. B 62 13104Google Scholar
[24] Rafizadeh H A 1974 Physica 74 135Google Scholar
[25] Cox B J, Thamwattana N, Hill J M 2007 Proc. R. Soc. A 463 461Google Scholar
[26] Cox B J, Thamwattana N, Hill J M 2007 Proc. R. Soc. A 463 477Google Scholar
Catalog
Metrics
- Abstract views: 8894
- PDF Downloads: 55
- Cited By: 0