Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on the influences of point defects on the thermal conductivity of carbon nanotube by simulation with orthogonal array testing strategy

Li Wei Feng Yan-Hui Chen Yang Zhang Xin-Xin

Citation:

Research on the influences of point defects on the thermal conductivity of carbon nanotube by simulation with orthogonal array testing strategy

Li Wei, Feng Yan-Hui, Chen Yang, Zhang Xin-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the preparation process of carbon nanotubes, various point defects inevitably come into being in the lattice structures. The defects strongly affect the thermal transport properties of carbon nanotubes. Thermal conduction in carbon nanotube is simulated by using nonequilibrium molecular dynamics method with reactive bond order (REBO) potential. Thermal conductivities of carbon nanotubes with and without defects are calculated for comparison. An orthogonal array testing strategy is employed. In the calculation it greatly saves the experimental effort and identifies the degrees of influence of such structural factors as defect type, tube length, tube radius, etc. on thermal conductivity of tube. The effects of three types of point defects: vacancy, doping and adsorption are primarily studied, and the ambient temperature factor is also analyzed. Simulation results show that the thermal conductivity of carbon nanotubes with defects decreases significantly due to point defects compared with that of perfect carbon nanotubes. The defect type has the first greatest influence on the decrease of thermal conductivity, and hvae the second third greatest infuluences respeetively the radius and the length of carbon nanotubes. The degrees of influence of the above types of point defect are in the order of vacancydopingadsorption. Different types of point defects have different effects on tubes at different ambient temperatures.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50876010, 51176011) and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-08-0721).
    [1]

    Che J W, Iii W A G 2000 Nanotechnology 11 65

    [2]

    Kondo N, Yamamoto T, Watanabe K 2006 e-Journal of Surface Science and Nanotechnology 4 239

    [3]
    [4]
    [5]

    Yao Z, Wang J S, Li B, Liu G R 2005 Phys. Rev. B 71 85417

    [6]
    [7]

    Bi K, Chen Y, Yang J, Wang Y, Chen M 2006 Phys. Lett. A 350 150

    [8]
    [9]

    Cummings A, Osman M, Srivastava D, Menon M 2004 Phys. Rev. B 70 115405

    [10]

    Padgett C W, Brenner D W 2004 Nano Lett. 4 1051

    [11]
    [12]

    Meng F Y, Ogata S, Xu D S, Shibutani Y, Shi S Q 2007 Phys. Rev. B 75 205403

    [13]
    [14]

    Hone J, Whitney M, Piskoti C, Zettl A 1999 Phys. Rev. B 59 2514

    [15]
    [16]

    Zhang Q, Chen G, Yoon S F, Ahn J, Wang S G, Zhou Q, Wang Q, Li J Q 2002 Phys. Rev. B 66 165440

    [17]
    [18]

    Yu C, Shi L, Yao Z, Li D, Majumdar A 2005 Nano Lett. 5 1842

    [19]
    [20]

    Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T 2005 Phys. Rev. Lett. 95 65502

    [21]
    [22]
    [23]

    Choi T Y, Poulikakos D, Tharian J, Sennhauser U 2006 Nano Lett. 6 1589

    [24]
    [25]

    Pop E, Mann D, Wang Q, Goodson K, Dai H 2006 Nano Lett. 6 96

    [26]
    [27]

    Kim P, Shi L, Majumdar A, Mceuen P L 2001 Phys. Rev. Lett. 87 215502

    [28]

    Wang Z L, Liang J G, Tang D W 2008 Acta Phys. Sin. 57 3391 (in Chinese) [王照亮, 梁金国, 唐大伟 2008 物理学报 57 3391]

    [29]
    [30]
    [31]

    Berber S, Kwon Y K, Tomnek D 2000 Phys. Rev. Lett. 84 4613

    [32]
    [33]

    Berendsen H J C, Postma J P M, Van Gunsteren W F, Dinola A, Haak J R 1984 The Journal of Chemical Physics 81 3684

    [34]

    Maiti A, Mahan G D, Pantelides S T 1997 Solid State Commun. 102 517

    [35]
    [36]

    Bi K D 2007 Ph. D. Dissertation (Nanjing: Southeast University) (in Chinese) [毕可东 2007 博士学位论文 (南京: 东南大学)]

    [37]
    [38]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [39]
    [40]
    [41]

    Jones J E 1924 Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 106 463

    [42]

    Tersoff J 1988 Phys. Rev. Lett. 61 2879

    [43]
    [44]
    [45]

    Osman M A, Srivastava D 2001 Nanotechnology 21

    [46]
    [47]

    Maruyama S 2003 Nanoscale and Microscale Thermophysical Engineering 7 41

    [48]

    Grujicic M, Cao G, Gersten B 2004 Materials Science and Engineering B 107 204

    [49]
    [50]

    Lukes J R, Zhong H 2007 Journal of Heat Transfer 129 705

    [51]
    [52]
    [53]

    Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星, 朱长纯 2006 物理学报 55 3552]

    [54]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]

    [55]
    [56]

    Zhang G, Li B 2005 The Journal of Chemical Physics 123 114714

    [57]
    [58]

    Xiao Y, Yan X H, Cao J X, Ding J W, Mao Y L, Xiang J 2004 Phys. Rev. B 69 205415

    [59]
    [60]
    [61]

    Fan H, Zhang K, Yuen M M F 2006 Electronic Materials and Packaging, 2006. EMAP 2006 International Conference on, Kowloon, 2006-01-01 1

    [62]

    Ren C, Zhang W, Xu Z, Zhu Z, Huai P 2010 The Journal of Physical Chemistry C 114 5786

    [63]
  • [1]

    Che J W, Iii W A G 2000 Nanotechnology 11 65

    [2]

    Kondo N, Yamamoto T, Watanabe K 2006 e-Journal of Surface Science and Nanotechnology 4 239

    [3]
    [4]
    [5]

    Yao Z, Wang J S, Li B, Liu G R 2005 Phys. Rev. B 71 85417

    [6]
    [7]

    Bi K, Chen Y, Yang J, Wang Y, Chen M 2006 Phys. Lett. A 350 150

    [8]
    [9]

    Cummings A, Osman M, Srivastava D, Menon M 2004 Phys. Rev. B 70 115405

    [10]

    Padgett C W, Brenner D W 2004 Nano Lett. 4 1051

    [11]
    [12]

    Meng F Y, Ogata S, Xu D S, Shibutani Y, Shi S Q 2007 Phys. Rev. B 75 205403

    [13]
    [14]

    Hone J, Whitney M, Piskoti C, Zettl A 1999 Phys. Rev. B 59 2514

    [15]
    [16]

    Zhang Q, Chen G, Yoon S F, Ahn J, Wang S G, Zhou Q, Wang Q, Li J Q 2002 Phys. Rev. B 66 165440

    [17]
    [18]

    Yu C, Shi L, Yao Z, Li D, Majumdar A 2005 Nano Lett. 5 1842

    [19]
    [20]

    Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T 2005 Phys. Rev. Lett. 95 65502

    [21]
    [22]
    [23]

    Choi T Y, Poulikakos D, Tharian J, Sennhauser U 2006 Nano Lett. 6 1589

    [24]
    [25]

    Pop E, Mann D, Wang Q, Goodson K, Dai H 2006 Nano Lett. 6 96

    [26]
    [27]

    Kim P, Shi L, Majumdar A, Mceuen P L 2001 Phys. Rev. Lett. 87 215502

    [28]

    Wang Z L, Liang J G, Tang D W 2008 Acta Phys. Sin. 57 3391 (in Chinese) [王照亮, 梁金国, 唐大伟 2008 物理学报 57 3391]

    [29]
    [30]
    [31]

    Berber S, Kwon Y K, Tomnek D 2000 Phys. Rev. Lett. 84 4613

    [32]
    [33]

    Berendsen H J C, Postma J P M, Van Gunsteren W F, Dinola A, Haak J R 1984 The Journal of Chemical Physics 81 3684

    [34]

    Maiti A, Mahan G D, Pantelides S T 1997 Solid State Commun. 102 517

    [35]
    [36]

    Bi K D 2007 Ph. D. Dissertation (Nanjing: Southeast University) (in Chinese) [毕可东 2007 博士学位论文 (南京: 东南大学)]

    [37]
    [38]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [39]
    [40]
    [41]

    Jones J E 1924 Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 106 463

    [42]

    Tersoff J 1988 Phys. Rev. Lett. 61 2879

    [43]
    [44]
    [45]

    Osman M A, Srivastava D 2001 Nanotechnology 21

    [46]
    [47]

    Maruyama S 2003 Nanoscale and Microscale Thermophysical Engineering 7 41

    [48]

    Grujicic M, Cao G, Gersten B 2004 Materials Science and Engineering B 107 204

    [49]
    [50]

    Lukes J R, Zhong H 2007 Journal of Heat Transfer 129 705

    [51]
    [52]
    [53]

    Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星, 朱长纯 2006 物理学报 55 3552]

    [54]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]

    [55]
    [56]

    Zhang G, Li B 2005 The Journal of Chemical Physics 123 114714

    [57]
    [58]

    Xiao Y, Yan X H, Cao J X, Ding J W, Mao Y L, Xiang J 2004 Phys. Rev. B 69 205415

    [59]
    [60]
    [61]

    Fan H, Zhang K, Yuen M M F 2006 Electronic Materials and Packaging, 2006. EMAP 2006 International Conference on, Kowloon, 2006-01-01 1

    [62]

    Ren C, Zhang W, Xu Z, Zhu Z, Huai P 2010 The Journal of Physical Chemistry C 114 5786

    [63]
  • [1] Qin Cheng-Long, Luo Xiang-Yan, Xie Quan, Wu Qiao-Dan. Molecular dynamics study of thermal conductivity of carbon nanotubes and silicon carbide nanotubes. Acta Physica Sinica, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [2] Wang Lei, Zhang Ran-Ran, Fang Wei. Simulation of static and dynamic mechanical characteristics of carbon nanotubes and carbon nano-peapods with defects. Acta Physica Sinica, 2019, 68(16): 166101. doi: 10.7498/aps.68.20190594
    [3] Yang Quan, Ma Li, Yang Bin, Ding Hui-Yang, Chen Tao, Yang Zhan, Sun Li-Ning, Toshio Fukuda. Method of picking up carbon nanotubes inside scanning electron microscope. Acta Physica Sinica, 2018, 67(13): 136801. doi: 10.7498/aps.67.20180347
    [4] Zeng Yong-Hui, Jiang Wu-Gui, Qin Qing-Hua. Influence of helical rise on the self-excited oscillation behavior of zigzag @ zigzag double-wall carbon nanotubes. Acta Physica Sinica, 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [5] He Hui-Fang, Chen Zhi-Quan. Positron annihilation studied defects and their influence on thermal conductivity of chemically synthesized Bi2Te3 nanocrystal. Acta Physica Sinica, 2015, 64(20): 207804. doi: 10.7498/aps.64.207804
    [6] Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping. Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [7] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [8] Li Rui, Sun Dai-Hai. Influence of defects on friction and motion of carbon nanotube. Acta Physica Sinica, 2014, 63(5): 056101. doi: 10.7498/aps.63.056101
    [9] Li Jing, Feng Yan-Hui, Zhang Xin-Xin, Huang Cong-Liang, Yang Mu. Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering. Acta Physica Sinica, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [10] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [11] Tang Jing-Jing, Feng Yan-Hui, Li Wei, Cui Liu, Zhang Xin-Xin. Thermal conductivity of carbon nanotube cable type composite. Acta Physica Sinica, 2013, 62(22): 226102. doi: 10.7498/aps.62.226102
    [12] Li Wei, Feng Yan-Hui, Tang Jin-Jin, Zhang Xin-Xin. Thermal conductivity and thermal rectification of carbon nanotube Y junctions. Acta Physica Sinica, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [13] Yang Ping, Wang Xiao-Liang, Li Pei, Wang Huang, Zhang Li-Qiang, Xie Fang-Wei. The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics. Acta Physica Sinica, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [14] Cao Bing-Yang, Dong Ruo-Yu, Kong Jie, Chen Heng, Xu Yan, Yung Kai-Leung, Cai An. Experimental study of thermal conductivity of polyethylene nanowire arrays fabricated by the nanoporous template wetting technique. Acta Physica Sinica, 2012, 61(4): 046501. doi: 10.7498/aps.61.046501
    [15] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [16] Wang Jian-Li, Xiong Guo-Ping, Gu Ming, Zhang Xing, Liang Ji. A study on the thermal conductivity of multiwalled carbon nanotube/polypropylene composite. Acta Physica Sinica, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [17] Hou Quan-Wen, Cao Bing-Yang, Guo Zeng-Yuan. Thermal conductivity of carbon nanotube: From ballistic to diffusive transport. Acta Physica Sinica, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [18] Xin Hao, Han Qiang, Yao Xiao-Hu. Influences of atom vacancies on buckling properties of armchair single-walled carbon nanotubes shown by molecular dynamics simulation. Acta Physica Sinica, 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [19] Zhang Kai-Wang, Zhong Jian-Xin. Influence of defects on the melting and premelting of carbon nanotubes. Acta Physica Sinica, 2008, 57(6): 3679-3683. doi: 10.7498/aps.57.3679
    [20] Bao Wen-Xing, Zhu Chang-Chun. Study of thermal conduction of carbon nanotube by molecular dynamics. Acta Physica Sinica, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
Metrics
  • Abstract views:  7951
  • PDF Downloads:  634
  • Cited By: 0
Publishing process
  • Received Date:  10 November 2011
  • Accepted Date:  05 December 2011
  • Published Online:  05 July 2012

/

返回文章
返回