Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermal conductivity of nanofluids based on hydroxylated Janus carbon nanotubes

LI Kangrui WANG Jun XIA Guodong

Citation:

Thermal conductivity of nanofluids based on hydroxylated Janus carbon nanotubes

LI Kangrui, WANG Jun, XIA Guodong
cstr: 32037.14.aps.74.20241657
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The excellent thermal conductivity of the carbon nanotubes leads to the high thermal conductivity of the nanofluids prepared by carbon nanotubes. The addition of functional groups on the surface of the carbon nanotubes canimprove the stability of the water/CNT nanofluids. The excellent diffusion properties of the Janus particles result in the elevated thermal conductivity of the Janus nanofluids. In thiswork, hydroxylated single-walled carbon nanotube (SWCNT-OH) particles, as Janus particles, are constructed and a water/SWCNT-OH-Janus nanofluid model is proposed by introducing SWCNT-OH particles into a base fluid (water). By using equilibrium molecular dynamics simulations, the thermal conductivity of nanofluids is calculated. The mechanism of the enhanced thermal conductivity is investigated by analyzing the solid-like liquid layers formed by liquid molecules around particles, Brownian motion of CNT particles, and CNT/water interfacial thermal resistance. It can be concluded that the thermal conductivity of the nanofluids with SWCNT-OH particles can be enhanced compared with that of the nanofluids with normal SWCNT particles. The hydrogen bond between hydroxyl group and water molecules results in the adsorption of water molecules onto the surface of carbon nanotube. This process increases the density of the liquid adsorption layer on the CNT surface, thereby enhancing the effect of the solid-liquid layer. The hydroxyl groups on the CNT surface degrade the solid-liquid interfacial thermal resistance, which promotes the heat transfer within the nanofluids. Moreover, the hydroxyl groups also enhance the interaction between the CNT particles and the water molecules,leading to stronger Brownian motionof particles. The combination of these factors will be responsible for the enhancement thermal conductivity of the water/SWCNT-OH nanofluids.For SWCNT-OH-Janus nanofluids, the thermal conductivity can be further enhanced, owing to the strong Brownian motion of the Janus particles.
      Corresponding author: WANG Jun, jwang@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12472268).
    [1]

    Liu M S, Lin M C, Tsai C Y, Wang C C 2006 Int. J. Heat Mass Transf. 49 3028Google Scholar

    [2]

    Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A 2001 Appl. Phys. Lett. 79 2252Google Scholar

    [3]

    Han X F, Lu L W, Yan S Y, Yang X H, Tian R, Zhao X Y 2021 J. Therm. Sci. 30 1581Google Scholar

    [4]

    Ishii K, Ogiyama T, Fumoto K, Nishina Y 2024 Appl. Phys. Lett. 125 023104Google Scholar

    [5]

    王军, 崔鑫, 夏国栋 2023 北京工业大学学报 49 1116Google Scholar

    Wang J, Cui X, Xia G D 2023 J. Beijing Univ. Technol. 49 1116Google Scholar

    [6]

    Xuan Y M, Li Q 2000 Int. J. Heat Mass Transf. 21 58Google Scholar

    [7]

    Liu B, Liang W H, Luo Z M, Sarvar S, Fereidooni L, Kasaeian A 2024 Mol. Liq. 414 126052Google Scholar

    [8]

    Xuan Y M, Duan H L, Li Q 2014 RSC Adv. 4 16206Google Scholar

    [9]

    Rapp B, Hussam A 2023 J. Appl. Phys. 133 134302Google Scholar

    [10]

    Dai J H, Zhai Y L, Li Z H, Wang H 2024 J. Mol. Liq. 400 124518Google Scholar

    [11]

    Liu W W, Wang J, Xia G D, Li Z G 2023 Phys. Fluids 35 083316Google Scholar

    [12]

    Liu W W, Cui J, Wang J, Xia G D, Li Z G 2023 Phys. Fluids 35 032004Google Scholar

    [13]

    Yu W, Choi S U S 2004 J. Nanopart. Res. 6 355Google Scholar

    [14]

    谢华清, 奚同庚, 王锦昌 2003 物理学报 52 1444Google Scholar

    Xie H Q, Xi T G, Wang J C 2003 Acta Phys. Sin. 52 1444Google Scholar

    [15]

    Xue L, Keblinski P, Phillpot S R, Choi S U S, Eastman J A 2004 Int. J. Heat Mass Transf. 47 4277Google Scholar

    [16]

    张智奇, 钱胜, 王瑞金, 朱泽飞 2019 物理学报 68 054401Google Scholar

    Zhang Z Q, Qian S, Wang R J, Zhu Z F 2019 Acta Phys. Sin. 68 054401Google Scholar

    [17]

    Karthik V, Sahoo S, Pabi S K, Ghosh S 2013 Int. J. Therm. Sci. 64 53Google Scholar

    [18]

    Cui W Z, Shen Z J, Yang J G, Wu S H 2015 Appl. Therm. Eng. 76 261Google Scholar

    [19]

    李屹同, 沈谅平, 王浩, 汪汉斌 2013 物理学报 62 124401Google Scholar

    Li YT, Shen L P, Wang H, Wang H B 2013 Acta Phys. Sin. 62 124401Google Scholar

    [20]

    Lenin R, Joy P A, Bera C 2021 J. Mol. Liq. 338 116929Google Scholar

    [21]

    刘旺旺, 张克学, 王军, 夏国栋 2024 物理学报 73 075101Google Scholar

    Liu W W, Zhang K X, Wang J, Xia G D 2024 Acta Phys. Sin. 73 075101Google Scholar

    [22]

    Roni M R H, Shahadat M R B, Morshed A M M 2021 Micro Nano Lett. 16 221Google Scholar

    [23]

    Jabbari F, Rajabpour A, Saedodin S 2017 Chem. Eng. Sci. 174 67Google Scholar

    [24]

    Cui W Z, Shen Z J, Yang J G, Wu S H, Bai M L 2014 RSC Adv. 4 55580Google Scholar

    [25]

    Kamalvand M, Karami M 2013 Int. J. Therm. Sci. 65 189Google Scholar

    [26]

    侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809Google Scholar

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809Google Scholar

    [27]

    Jabbari F, Rajabpour A, Saedodin S 2021 Microfluid. Nanofluid. 25 102Google Scholar

    [28]

    Xing M B, Yu J L, Wang R X 2015 Appl. Therm. Eng. 87 344Google Scholar

    [29]

    Li X K, Chen W J, Zou C J 2020 Powder Technol. 361 957Google Scholar

    [30]

    陈文哲, 王霜, 翟玉玲, 李舟航 2023 化工进展 42 5700Google Scholar

    Chen W Z, Wang S, Zhai Y L, Li Z H 2023 Chem. Ind. Eng. Prog. 42 5700Google Scholar

    [31]

    Pang C W, Jung J, Kang Y T 2014 Int. J. Heat Mass Transf. 72 392Google Scholar

    [32]

    Hou J M, Shao C, Huang L Z, Du J Y, Wang R J 2023 Powder Technol. 430 119005Google Scholar

    [33]

    Zhou L, Zhu J W, Zhao Y F, Ma H H 2022 Int. J. Heat Mass Transf. 183 122124Google Scholar

    [34]

    Rennhofer H, Zanghellini B 2021 Nanomaterials 11 1469Google Scholar

    [35]

    Premalatha M, Jeevaraj A K S 2017 Part. Sci. Technol. 36 523Google Scholar

    [36]

    Rathinavel S, Priyadharshini K, Panda D 2021 Mater. Sci. Eng. B 268 115095Google Scholar

    [37]

    Zhang X, Zhang Y H, Yan Y R, Chen Z H 2022 Sol. Energy Mater. Sol. Cells 236 111546Google Scholar

    [38]

    Cui X, Wang J, Xia G D 2022 Nanoscale 14 99Google Scholar

    [39]

    Kobayashi Y, Arai N 2019 J. Electrochem. Soc. 166 B3223Google Scholar

    [40]

    Sarkar S, Selvam R P 2007 J. Appl. Phys. 102 074302Google Scholar

    [41]

    Tersoff J 1988 Phys. Rev. B 37 6991Google Scholar

    [42]

    Rudyak V Y, Krasnolutskii S L 2017 Tech. Phys. 62 1456Google Scholar

    [43]

    Huang J, Sang L X, Yang Q F, Wu Y T 2024 Sol. Energy Mater. Sol. Cells 277 113150Google Scholar

    [44]

    Koo J, Kleinstreuer C 2004 J. Nanopart. Res. 6 577Google Scholar

    [45]

    Zhang C Z, Puligheddu M, ZhangL F, Car R, Galli G 2023 J. Phys. Chem. B 127 7011Google Scholar

    [46]

    Wang R J, Qian S, Zhang Z Q 2018 Int. J. Heat Mass Transf. 127 1138Google Scholar

  • 图 1  水/CNT纳米流体系统模型图

    Figure 1.  Simulation system of nanofluids with a CNT particle

    图 2  两种水/CNT纳米流体在不同羟基密度下的热导率

    Figure 2.  Thermal conductivity of two water/CNT nanofluids with different hydroxyl densities.

    图 3  不同羟基密度下水/SWCNT-OH (a)和水/SWCNT-OH-Janus (b)纳米流体中氧-氧原子的径向分布函数

    Figure 3.  RDF of oxygen–oxygen atoms for (a) Water/SWCNT-OH nanofluids and (b) Water/SWCNT-OH-Janus nanofluids with different hydroxyl density.

    图 4  不同羟基密度下水/SWCNT-OH (a)和水/SWCNT-OH-Janus (b)纳米流体中碳-氧原子的径向分布函数

    Figure 4.  RDF of carbon-oxygen atoms for (a) Water/SWCNT-OH nanofluids and (b) Water/SWCNT-OH-Janus nanofluids with different hydroxyl density.

    图 5  两种水/CNT纳米流体在不同羟基密度下CNT颗粒与基液水之间的界面热阻

    Figure 5.  Kapitza resistance between CNT nanoparticle and water with different hydroxyl densities.

    图 6  CNT颗粒固定和非固定情况下水/SWCNT-OH (a)和水/SWCNT-OH-Janus (b)纳米流体的热导率

    Figure 6.  Comparison of the TCs for (a) Water/SWCNT-OH nanofluids and (b) Water/SWCNT-OH-Janus nanofluids under unfixed and fixed conditions.

    图 7  不同羟基密度下SWCNT-OH颗粒(a)和SWCNT-OH-Janus颗粒(b)在基液中的MSD

    Figure 7.  MSD of SWCNT-OH (a) and SWCNT-OH-Janus (b) particles with different hydroxyl densityin base fluids.

    图 8  SWCNT-OH颗粒和SWCNT-OH-Janus颗粒在基液中的扩散系数

    Figure 8.  Diffusion coefficient of SWCNT-OH and SWCNT-OH-Janus particles in base fluid.

    表 1  亲疏水性不同的SWCNT-OH颗粒

    Table 1.  SWCNT-OH particles with different hydrophilicity.

    颗粒类型 SWCNT-OH颗粒
    羟基数量 0 8 16 24 32
    羟基密度/% 0 5.3 10.6 16.0 21.3
    示意图
    DownLoad: CSV

    表 2  亲疏水性不同的SWCNT-OH-Janus颗粒

    Table 2.  SWCNT-OH-Janus particles with different hydrophilicity.

    颗粒类型 SWCNT-OH-Janus颗粒
    羟基数量 0 4 8 12 16
    羟基密度/% 0 5.3 10.6 16.0 21.3
    示意图
    DownLoad: CSV
  • [1]

    Liu M S, Lin M C, Tsai C Y, Wang C C 2006 Int. J. Heat Mass Transf. 49 3028Google Scholar

    [2]

    Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A 2001 Appl. Phys. Lett. 79 2252Google Scholar

    [3]

    Han X F, Lu L W, Yan S Y, Yang X H, Tian R, Zhao X Y 2021 J. Therm. Sci. 30 1581Google Scholar

    [4]

    Ishii K, Ogiyama T, Fumoto K, Nishina Y 2024 Appl. Phys. Lett. 125 023104Google Scholar

    [5]

    王军, 崔鑫, 夏国栋 2023 北京工业大学学报 49 1116Google Scholar

    Wang J, Cui X, Xia G D 2023 J. Beijing Univ. Technol. 49 1116Google Scholar

    [6]

    Xuan Y M, Li Q 2000 Int. J. Heat Mass Transf. 21 58Google Scholar

    [7]

    Liu B, Liang W H, Luo Z M, Sarvar S, Fereidooni L, Kasaeian A 2024 Mol. Liq. 414 126052Google Scholar

    [8]

    Xuan Y M, Duan H L, Li Q 2014 RSC Adv. 4 16206Google Scholar

    [9]

    Rapp B, Hussam A 2023 J. Appl. Phys. 133 134302Google Scholar

    [10]

    Dai J H, Zhai Y L, Li Z H, Wang H 2024 J. Mol. Liq. 400 124518Google Scholar

    [11]

    Liu W W, Wang J, Xia G D, Li Z G 2023 Phys. Fluids 35 083316Google Scholar

    [12]

    Liu W W, Cui J, Wang J, Xia G D, Li Z G 2023 Phys. Fluids 35 032004Google Scholar

    [13]

    Yu W, Choi S U S 2004 J. Nanopart. Res. 6 355Google Scholar

    [14]

    谢华清, 奚同庚, 王锦昌 2003 物理学报 52 1444Google Scholar

    Xie H Q, Xi T G, Wang J C 2003 Acta Phys. Sin. 52 1444Google Scholar

    [15]

    Xue L, Keblinski P, Phillpot S R, Choi S U S, Eastman J A 2004 Int. J. Heat Mass Transf. 47 4277Google Scholar

    [16]

    张智奇, 钱胜, 王瑞金, 朱泽飞 2019 物理学报 68 054401Google Scholar

    Zhang Z Q, Qian S, Wang R J, Zhu Z F 2019 Acta Phys. Sin. 68 054401Google Scholar

    [17]

    Karthik V, Sahoo S, Pabi S K, Ghosh S 2013 Int. J. Therm. Sci. 64 53Google Scholar

    [18]

    Cui W Z, Shen Z J, Yang J G, Wu S H 2015 Appl. Therm. Eng. 76 261Google Scholar

    [19]

    李屹同, 沈谅平, 王浩, 汪汉斌 2013 物理学报 62 124401Google Scholar

    Li YT, Shen L P, Wang H, Wang H B 2013 Acta Phys. Sin. 62 124401Google Scholar

    [20]

    Lenin R, Joy P A, Bera C 2021 J. Mol. Liq. 338 116929Google Scholar

    [21]

    刘旺旺, 张克学, 王军, 夏国栋 2024 物理学报 73 075101Google Scholar

    Liu W W, Zhang K X, Wang J, Xia G D 2024 Acta Phys. Sin. 73 075101Google Scholar

    [22]

    Roni M R H, Shahadat M R B, Morshed A M M 2021 Micro Nano Lett. 16 221Google Scholar

    [23]

    Jabbari F, Rajabpour A, Saedodin S 2017 Chem. Eng. Sci. 174 67Google Scholar

    [24]

    Cui W Z, Shen Z J, Yang J G, Wu S H, Bai M L 2014 RSC Adv. 4 55580Google Scholar

    [25]

    Kamalvand M, Karami M 2013 Int. J. Therm. Sci. 65 189Google Scholar

    [26]

    侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809Google Scholar

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809Google Scholar

    [27]

    Jabbari F, Rajabpour A, Saedodin S 2021 Microfluid. Nanofluid. 25 102Google Scholar

    [28]

    Xing M B, Yu J L, Wang R X 2015 Appl. Therm. Eng. 87 344Google Scholar

    [29]

    Li X K, Chen W J, Zou C J 2020 Powder Technol. 361 957Google Scholar

    [30]

    陈文哲, 王霜, 翟玉玲, 李舟航 2023 化工进展 42 5700Google Scholar

    Chen W Z, Wang S, Zhai Y L, Li Z H 2023 Chem. Ind. Eng. Prog. 42 5700Google Scholar

    [31]

    Pang C W, Jung J, Kang Y T 2014 Int. J. Heat Mass Transf. 72 392Google Scholar

    [32]

    Hou J M, Shao C, Huang L Z, Du J Y, Wang R J 2023 Powder Technol. 430 119005Google Scholar

    [33]

    Zhou L, Zhu J W, Zhao Y F, Ma H H 2022 Int. J. Heat Mass Transf. 183 122124Google Scholar

    [34]

    Rennhofer H, Zanghellini B 2021 Nanomaterials 11 1469Google Scholar

    [35]

    Premalatha M, Jeevaraj A K S 2017 Part. Sci. Technol. 36 523Google Scholar

    [36]

    Rathinavel S, Priyadharshini K, Panda D 2021 Mater. Sci. Eng. B 268 115095Google Scholar

    [37]

    Zhang X, Zhang Y H, Yan Y R, Chen Z H 2022 Sol. Energy Mater. Sol. Cells 236 111546Google Scholar

    [38]

    Cui X, Wang J, Xia G D 2022 Nanoscale 14 99Google Scholar

    [39]

    Kobayashi Y, Arai N 2019 J. Electrochem. Soc. 166 B3223Google Scholar

    [40]

    Sarkar S, Selvam R P 2007 J. Appl. Phys. 102 074302Google Scholar

    [41]

    Tersoff J 1988 Phys. Rev. B 37 6991Google Scholar

    [42]

    Rudyak V Y, Krasnolutskii S L 2017 Tech. Phys. 62 1456Google Scholar

    [43]

    Huang J, Sang L X, Yang Q F, Wu Y T 2024 Sol. Energy Mater. Sol. Cells 277 113150Google Scholar

    [44]

    Koo J, Kleinstreuer C 2004 J. Nanopart. Res. 6 577Google Scholar

    [45]

    Zhang C Z, Puligheddu M, ZhangL F, Car R, Galli G 2023 J. Phys. Chem. B 127 7011Google Scholar

    [46]

    Wang R J, Qian S, Zhang Z Q 2018 Int. J. Heat Mass Transf. 127 1138Google Scholar

Metrics
  • Abstract views:  3574
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  28 November 2024
  • Accepted Date:  29 December 2024
  • Available Online:  17 January 2025
  • Published Online:  20 March 2025
  • /

    返回文章
    返回