-
In order to study intense pulsed emission characteristics of carbon nanotube films (CNTs), CNTs were synthesized on the surface of Cu substrate (Cu-CNTs) by pyrolysis of iron phthalocyanine (FePc). Orientations of CNTs obtained are different from one another. Intense pulsed field emission of CNTs was measured on the 20GW pulse power system using a diode structure. For single pulse emission, the emission current peak of Cu-CNTs increases linearly with pulse field peak, at the applied peak electric field of ~15.5 V/μ; the current peak is ~5.56 kA, and equivalent emission current density is ~0.283 kA/cm2. At the applied peak electric field of ~32.0 V/μ, the current peak can achieve ~18.19kA, and the equivalent emission current density is~0.927 kA/cm2; the ability of emission current of CNTs is obviously better than that reported. In many continuous and similar peak pulse emissions, Cu-CNTs provide with good repeatability of pulsed emission, and present better emission stability.
-
Keywords:
- intense pulsed emission /
- carbon nanotubes /
- copper substrate /
- stability
[1] Iijima S 1991 Nature 354 56
[2] Yang D J, Wang S G, Zhang Q, Sellin P J, Chen G 2004 Phys. Lett. A 329 207
[3] Novak J P, Lay M D, Perkins F K, Snow E S 2004 Solid-State Ele. 48 1753
[4] Tsukagoshi K, Yoneya N, Uryu S, Aoyagi Y, Kanda A, Ootuka Y, Alphenaar B W 2002 Phys. B Condensed Matter 323 107
[5] Fennimore A M 2007 Nature 424 408
[6] Kawakita K, Hata K, Sato H, Saito Y 2006 J. Vac. Sci. Technol. B 24 950
[7] Teo K B K, Minoux E, Hudanski L, Peauger F, Schnell J P, Gangloff L, Legagneux P, Dieumegard D, Amaratunga G A J, Milne W I 2005 Nature 437 968
[8] Bonard J M, Dean K A, Coll B F, Klinke C 2002 Phys. Rev. Lett. 89 7602
[9] Seelaboyina R, Huang J, Choi W B2006 Appl. Phys. Lett. 88 194104
[10] Ma H L, Zhang X Y, Qiao S Z, Zhang R, Zeng F G, Xia L S 2012 Advanced Materials Research 586 130
[11] Zeng F G, Li X, Liu W H, Qiao S Z, Ma H L, Zhang R, Xia L S, Chen Y, Liu X G, Zhang H 2011 Chinese Sci Bull. 56 2379
[12] Miao Q L, Zhang Y, Xia L S, Huang Y H, Qi J J, Gao Z J, Zhang H 2007 Acta Phys. Sin. 56 5335 (in Chinese) [廖庆亮, 张跃, 夏连胜, 黄运华, 齐俊杰, 高战军, 张篁 2007 物理学报 56 5335]
[13] Miao Q L, Zhang Y, Xia L S, Qi J J, Huang Y H, Deng Z Q, Gao Z J, Cao J W 2008 Acta Phys. Sin. 57 2328 (in Chinese) [ 廖庆亮, 张跃, 夏连胜, 齐俊杰, 黄运华, 邓战强, 高战军, 曹佳伟 2008 物理学报 57 2328]
[14] Zeng F G, Li X, Liu W H, Qiao S Z, Ma H L, Zhang R, Xia L S, Xia L S, Chen Y, Liu X G, Zhang H 2012 Chinese Sci. Bull. 57 1739
-
[1] Iijima S 1991 Nature 354 56
[2] Yang D J, Wang S G, Zhang Q, Sellin P J, Chen G 2004 Phys. Lett. A 329 207
[3] Novak J P, Lay M D, Perkins F K, Snow E S 2004 Solid-State Ele. 48 1753
[4] Tsukagoshi K, Yoneya N, Uryu S, Aoyagi Y, Kanda A, Ootuka Y, Alphenaar B W 2002 Phys. B Condensed Matter 323 107
[5] Fennimore A M 2007 Nature 424 408
[6] Kawakita K, Hata K, Sato H, Saito Y 2006 J. Vac. Sci. Technol. B 24 950
[7] Teo K B K, Minoux E, Hudanski L, Peauger F, Schnell J P, Gangloff L, Legagneux P, Dieumegard D, Amaratunga G A J, Milne W I 2005 Nature 437 968
[8] Bonard J M, Dean K A, Coll B F, Klinke C 2002 Phys. Rev. Lett. 89 7602
[9] Seelaboyina R, Huang J, Choi W B2006 Appl. Phys. Lett. 88 194104
[10] Ma H L, Zhang X Y, Qiao S Z, Zhang R, Zeng F G, Xia L S 2012 Advanced Materials Research 586 130
[11] Zeng F G, Li X, Liu W H, Qiao S Z, Ma H L, Zhang R, Xia L S, Chen Y, Liu X G, Zhang H 2011 Chinese Sci Bull. 56 2379
[12] Miao Q L, Zhang Y, Xia L S, Huang Y H, Qi J J, Gao Z J, Zhang H 2007 Acta Phys. Sin. 56 5335 (in Chinese) [廖庆亮, 张跃, 夏连胜, 黄运华, 齐俊杰, 高战军, 张篁 2007 物理学报 56 5335]
[13] Miao Q L, Zhang Y, Xia L S, Qi J J, Huang Y H, Deng Z Q, Gao Z J, Cao J W 2008 Acta Phys. Sin. 57 2328 (in Chinese) [ 廖庆亮, 张跃, 夏连胜, 齐俊杰, 黄运华, 邓战强, 高战军, 曹佳伟 2008 物理学报 57 2328]
[14] Zeng F G, Li X, Liu W H, Qiao S Z, Ma H L, Zhang R, Xia L S, Xia L S, Chen Y, Liu X G, Zhang H 2012 Chinese Sci. Bull. 57 1739
Catalog
Metrics
- Abstract views: 6452
- PDF Downloads: 492
- Cited By: 0