-
Steered molecular dynamics (SMD) simulations are performed to study the peeling of a single wall carbon nanotube (8, 8) from a silicon surface at room temperature. There is a regular relationship between the average force probed by the ideal spring and the peeling distance when the carbon nanotube (CNT) is peeled from the silicon substrate. A large positive and a large negative peak value can be found in the peeling process. The average force for varying peeling velocities is investigated and their peak values are fitted to a function of the peeling velocity. The SMD simulation results show that there is a linear relationship between the peak value and the peeling velocity, which is consistent well with some biophysics peeling experiments. Compared with macromolecules, the CNT has a strong adhesion to the silicon surface. The influences of both radius and length as well as the defects of the CNT on the peeling process are also examined. The numerical results indicate that the peak value of the peeling force is independent of the length of the CNT but increases linearly with the radius of the CNT increasing. The peak value of the peeling force is almost independent of the 5-7-7-5 defect in the CNT but critically weakened by the radius defect of the CNT. The suggested method provides a theoretical prediction for the future experiment at atomic scale, which is helpful for the potential application of the CNT in the silicon-based microelectronics industry.
-
Keywords:
- carbon nanotube /
- steered molecular dynamics /
- peeling
[1] Geppert L 2000 IEEE Spectrum 37 46
[2] Hu C M 1999 Nanotechnology 10 113
[3] Wang T, Jeppson K, Olofsson N, Campbell E E B, Liu J 2009 Nanotechnology 20 5203
[4] Iijima S 1991 Nature 354 56
[5] Li R, Hu Y Z, Wang H 2011 Acta Phys. Sin. 60 016106 (in Chinese) [李瑞, 胡元中, 王慧 2011 物理学报 60 016106]
[6] Chowdhury S C, Okabe T 2007 Composites A 38 747
[7] Grubmüller H, Heymann B, Tavan P 1996 Science 271 997
[8] Marszalek P E, Lu H, Li H, Carrion-Vazquez M, Oberhauser A F, Schulten K, Fernandez J M 1999 Nature 402 100
[9] Gullingsrud J, Schulten K 2003 Biophys. J. 85 2087
[10] Rief M, Oesterhelt F, Heymann B, Gaub H E 1997 Science 275 1295
[11] Reif M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109
[12] Cui S X, Liu C J, Zhang X 2003 Nano. Lett. 3 245
[13] Cui S X, Liu C J, Zhang W K, Zhang X, Wu C 2003 Macromolecules 36 3779
[14] Zhang W K, Zhang X 2003 Prog. Polym. Sci. 28 1271
[15] Wang Y, Zhang L X 2008 Acta Phys. Sin 57 3281 (in Chinese) [王禹, 章林溪 2008 物理学报 57 3281]
[16] Büyüköztürk O, Buehler J M, Lau D, Tuakta C 2011 Int. J. Solids Struct. 48 2131
[17] Shi X H, Kong Y, Zhao Y P, Gao H J 2005 Acta Mech. Sinica-prc 21 249
[18] Jiang H, Feng X Q, Huang Y, Hwang K C, Wu P D 2004 Comput. Method. Appl. M. 193 3419
[19] Qin Z, Qin Q H, Feng X Q 2008 Phys. Lett. A 372 6661
[20] Tersoff J 1988 Phys. Rev. B 37 6991
[21] Matyushov D V, Schmid R 1996 J. Chem. Phys. 104 8627
[22] Girifalco L A, Hodak M, Lee R S 2000 Phys. Rev. B 62 104
[23] Plimpton S 1995 J. Comput. Phys. 117 1
[24] Wang Y, Zhang L X 2008 Acta Polym. Sin. 3 216 (in Chinese) [王禹, 章林溪 2008 高分子学报 3 216]
-
[1] Geppert L 2000 IEEE Spectrum 37 46
[2] Hu C M 1999 Nanotechnology 10 113
[3] Wang T, Jeppson K, Olofsson N, Campbell E E B, Liu J 2009 Nanotechnology 20 5203
[4] Iijima S 1991 Nature 354 56
[5] Li R, Hu Y Z, Wang H 2011 Acta Phys. Sin. 60 016106 (in Chinese) [李瑞, 胡元中, 王慧 2011 物理学报 60 016106]
[6] Chowdhury S C, Okabe T 2007 Composites A 38 747
[7] Grubmüller H, Heymann B, Tavan P 1996 Science 271 997
[8] Marszalek P E, Lu H, Li H, Carrion-Vazquez M, Oberhauser A F, Schulten K, Fernandez J M 1999 Nature 402 100
[9] Gullingsrud J, Schulten K 2003 Biophys. J. 85 2087
[10] Rief M, Oesterhelt F, Heymann B, Gaub H E 1997 Science 275 1295
[11] Reif M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109
[12] Cui S X, Liu C J, Zhang X 2003 Nano. Lett. 3 245
[13] Cui S X, Liu C J, Zhang W K, Zhang X, Wu C 2003 Macromolecules 36 3779
[14] Zhang W K, Zhang X 2003 Prog. Polym. Sci. 28 1271
[15] Wang Y, Zhang L X 2008 Acta Phys. Sin 57 3281 (in Chinese) [王禹, 章林溪 2008 物理学报 57 3281]
[16] Büyüköztürk O, Buehler J M, Lau D, Tuakta C 2011 Int. J. Solids Struct. 48 2131
[17] Shi X H, Kong Y, Zhao Y P, Gao H J 2005 Acta Mech. Sinica-prc 21 249
[18] Jiang H, Feng X Q, Huang Y, Hwang K C, Wu P D 2004 Comput. Method. Appl. M. 193 3419
[19] Qin Z, Qin Q H, Feng X Q 2008 Phys. Lett. A 372 6661
[20] Tersoff J 1988 Phys. Rev. B 37 6991
[21] Matyushov D V, Schmid R 1996 J. Chem. Phys. 104 8627
[22] Girifalco L A, Hodak M, Lee R S 2000 Phys. Rev. B 62 104
[23] Plimpton S 1995 J. Comput. Phys. 117 1
[24] Wang Y, Zhang L X 2008 Acta Polym. Sin. 3 216 (in Chinese) [王禹, 章林溪 2008 高分子学报 3 216]
Catalog
Metrics
- Abstract views: 7658
- PDF Downloads: 563
- Cited By: 0