搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Logistic函数模型的纳米自组装动力学分析

闫昭 赵文静 王荣瑶

引用本文:
Citation:

基于Logistic函数模型的纳米自组装动力学分析

闫昭, 赵文静, 王荣瑶

Kinetic study of nanorods self-assembly process based on logistic function model

Yan Zhao, Zhao Wen-Jing, Wang Rong-Yao
PDF
导出引用
  • 利用快速混合停流吸收(stopped-flow absorption)技术, 研究了半胱氨酸分子介导的金纳米棒线性自组装过程的动力学性质. 通过观测金纳米棒的表面等离激元动态吸收光谱, 分析其自组装动力学行为及其与组装结构之间的关系. 研究表明, 传统的二阶反应动力学理论模型在描述金纳米棒自组装动力学行为上存在明显的局限性. 由此, 我们提出了基于Logistic函数的新的动力学分析模型. 与传统的理论模型相比, 新的理论模型具有更好的普适性, 不仅适用于定量分析不同速率的金纳米棒自组装动力学特征, 还提供了一种更加准确地描述组装初期动力学行为的方法. 此外, 这种新的动力学分析方法还有助于理解和建立金纳米棒组装动力学特征与组装体结构之间的关联.
    Understanding the complicated kinetic process involved in nanoparticle self-assembly is of considerable importance for designing and fabricating functional nanostructures with desired properties. In this work, using the stopped-flow absorption technique, we investigate kinetic behaviors involved in gold nanorod assembly mediated by cysteine molecules. Further combining with SEM microstructural analyses of the assembly structure of gold nanorods, we establish the correlations between the kinetic parameter and the assembled structure. The dynamical surface plasmonic absorptions of gold nanorods are monitored during the formation of GNRs chains with different assembly rates. And the acquired kinetic data are analyzed in the frame of the second-order theoretical model, which has been widely used in the literature for linear assembly of gold nanorods. We find that the second-order theoretical model for describing the kinetic behaviors is merely limited to the case of slow assembly process of gold nanorods, but shows large deviation when the assembly process is relatively fast. We, therefore, propose in this work a new kinetic model on the basis of the logistic function, to make kinetic analyses for the different assembly rates of gold nanorods. Compared with the second-order theoretical model, this new logistic function model possesses an extended validity in describing the kinetic behaviors of both the slow and relatively fast nanorods assembly. Particularly, due to introduction of a new parameter, i.e., the exponential parameter p, the logistic function model enables a more accurate description of the kinetic behavior at a very earlier assembly stage (e.g., on a millisecond scale), in addition to quantifying the assembly rate T0. More importantly, the value of p derived from the new logistic function model allows us to establish the kinetics-structure relationship. The slow assembly process that produces mainly the one-dimensional linear chains of nanorods, is featured by the value of kinetic parameter p close to 1. By contrast, for the relatively fast assembly process that results in the formations of irregular zigzag chains even two-dimensional assembled structures of nanorods, the value of kinetic parameter approaches to 2. Furthermore, in the present study, the kinetic parameter p based on the logistic model might be related to the fractal dimension (Df) of the aggregated structures of the gold nanorods self-assembly processes. These results suggest that the logistic function model could provide the kinetic features for directly quantifying the fractal structures of the nanorods assembly. We believe that the new kinetic analysis method presented in this work could be helpful for an in-depth understanding of the kinetics-structure-property relationship in self-assembled plasmonic nanostructures.
      通信作者: 王荣瑶, wangry@bit.edu.cn
    • 基金项目: 国家自然科学基金面上项目 (批准号: 11174033)和大学生创新项目(批准号: 201410007069) 资助的课题.
      Corresponding author: Wang Rong-Yao, wangry@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174033) and the Innovation Project of College Students, China (Grant No. 201410007069).
    [1]

    Sharon G, Michael S 2007 Nat. Mater. 6 557

    [2]

    Ma Y Q, Zou X W, Liu J X, Ouyang Z C 2006 Introduction to Soft Matter Physics (Beijing: Peking University Press) pp305-415 (in Chinese) [马余强, 邹宪武, 刘寄星,欧阳钟灿 2006 软物质物理学导论 (北京: 北京大学出版社) 第305-415页]

    [3]

    Kyle M, Christopher W, Siowling S, Bartosz G 2009 Small 5 1600

    [4]

    Liu K, Nie Z H, Zhao N N, Li W, Rubinstein M, Eugenia K 2010 Science 329 197

    [5]

    Liu K, Ahmed A, Chung S, Sugikawa K, Wu G X, Nie Z H 2013 ACS Nano. 7 7

    [6]

    Lim I S, Mott D, Njoki P, Pan Y, Zhou S, Zhong C J 2008 Langmuir 24 8857

    [7]

    Wang Y L, DePrince A E, Stephen K G, Lin X M, Matthew P 2010 J. Phys. Chem. Lett. 1 2692

    [8]

    Abdennour A, Ramesh K, Tian L M, Srikanth S 2013 Langmuir 29 56

    [9]

    Zhang J, Ge Z, Jiang X, Hassan P, Liu S 2007 J. Colloid Interface Sci. 316 796

    [10]

    Titoo J, Renee R, Nini E, Reeler A, Tom V, Knud J J, Thomas B, Kasper N 2012 J. Colloid Interface Sci. 376 83

    [11]

    Xiang Y J, Wu X C, Liu D F, Jiang X Y, Chu W G, Li Z Y, Ma Y, Zhou W Y, Xie S S 2008 J. Phys. Chem. C 112 3203

    [12]

    Lim I S, Derrick M, Mark H 2009 Anal. Chem. 81 689

    [13]

    Zhai D W, Wang P, Wang R Y 2015 Nanoscale 7 10690

    [14]

    Joseph S T S, Ipe B I, Pramod P, Thomas K G 2006 J. Phys. Chem. B 110 150

    [15]

    Zajek K, Gorek A 2010 Food Bioprod. Process. 88 55

    [16]

    Roush W B, Branton S L 2005 Poult. Sci. 84 494

    [17]

    Huang X H, Neretina S, Mostafa A 2009 Adv. Mater. 21 4880

    [18]

    Chen H J, Shao L, Li Q, Wang J F 2013 Chem. Soc. Rev. 42 2679

    [19]

    Weitz D A, Huang J S, Lin M Y, Sung J 1985 Phys. Rev. Lett. 54 1416

    [20]

    Mohraz A, Moler D B, Ziff R M, Solomon M J 2004 Phys. Rev. Lett. 92 155503

    [21]

    Li F, Josephson D P, Stein A 2011 Angew Chem., Int. Edit. 50 360

  • [1]

    Sharon G, Michael S 2007 Nat. Mater. 6 557

    [2]

    Ma Y Q, Zou X W, Liu J X, Ouyang Z C 2006 Introduction to Soft Matter Physics (Beijing: Peking University Press) pp305-415 (in Chinese) [马余强, 邹宪武, 刘寄星,欧阳钟灿 2006 软物质物理学导论 (北京: 北京大学出版社) 第305-415页]

    [3]

    Kyle M, Christopher W, Siowling S, Bartosz G 2009 Small 5 1600

    [4]

    Liu K, Nie Z H, Zhao N N, Li W, Rubinstein M, Eugenia K 2010 Science 329 197

    [5]

    Liu K, Ahmed A, Chung S, Sugikawa K, Wu G X, Nie Z H 2013 ACS Nano. 7 7

    [6]

    Lim I S, Mott D, Njoki P, Pan Y, Zhou S, Zhong C J 2008 Langmuir 24 8857

    [7]

    Wang Y L, DePrince A E, Stephen K G, Lin X M, Matthew P 2010 J. Phys. Chem. Lett. 1 2692

    [8]

    Abdennour A, Ramesh K, Tian L M, Srikanth S 2013 Langmuir 29 56

    [9]

    Zhang J, Ge Z, Jiang X, Hassan P, Liu S 2007 J. Colloid Interface Sci. 316 796

    [10]

    Titoo J, Renee R, Nini E, Reeler A, Tom V, Knud J J, Thomas B, Kasper N 2012 J. Colloid Interface Sci. 376 83

    [11]

    Xiang Y J, Wu X C, Liu D F, Jiang X Y, Chu W G, Li Z Y, Ma Y, Zhou W Y, Xie S S 2008 J. Phys. Chem. C 112 3203

    [12]

    Lim I S, Derrick M, Mark H 2009 Anal. Chem. 81 689

    [13]

    Zhai D W, Wang P, Wang R Y 2015 Nanoscale 7 10690

    [14]

    Joseph S T S, Ipe B I, Pramod P, Thomas K G 2006 J. Phys. Chem. B 110 150

    [15]

    Zajek K, Gorek A 2010 Food Bioprod. Process. 88 55

    [16]

    Roush W B, Branton S L 2005 Poult. Sci. 84 494

    [17]

    Huang X H, Neretina S, Mostafa A 2009 Adv. Mater. 21 4880

    [18]

    Chen H J, Shao L, Li Q, Wang J F 2013 Chem. Soc. Rev. 42 2679

    [19]

    Weitz D A, Huang J S, Lin M Y, Sung J 1985 Phys. Rev. Lett. 54 1416

    [20]

    Mohraz A, Moler D B, Ziff R M, Solomon M J 2004 Phys. Rev. Lett. 92 155503

    [21]

    Li F, Josephson D P, Stein A 2011 Angew Chem., Int. Edit. 50 360

  • [1] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控. 物理学报, 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [2] 郭金坤, 赵泽佳, 凌进中, 袁影, 王晓蕊. 软物质激光微纳加工技术. 物理学报, 2022, 71(17): 174203. doi: 10.7498/aps.71.20220625
    [3] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于black phosphorus纳米棒耦合的等离激元诱导透明. 物理学报, 2021, 70(4): 044201. doi: 10.7498/aps.70.20201331
    [4] 胡宝晶, 黄铭, 黎鹏, 杨成福. 基于纳米盘棒耦合的多频段等离激元诱导透明研究. 物理学报, 2020, 69(13): 134202. doi: 10.7498/aps.69.20200093
    [5] 杨颖, 宋俊杰, 万明威, 高靓辉, 方维海. 分子层次的金纳米棒-表面活性剂-磷脂自组装复合体形貌. 物理学报, 2020, 69(24): 248701. doi: 10.7498/aps.69.20200979
    [6] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [7] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [8] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤. 基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射. 物理学报, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [9] 张文彬, 陈尔强, 王晶, 张维, 王林格, 程正迪. 从纳米原子到巨型分子的软物质研究. 物理学报, 2016, 65(18): 183601. doi: 10.7498/aps.65.183601
    [10] 马平平, 张杰, 刘焕焕, 张静, 徐永刚, 王江, 张梦桥, 李永放. 金纳米棒三聚体中的等离激元诱导透明. 物理学报, 2016, 65(21): 217801. doi: 10.7498/aps.65.217801
    [11] 巫金波, 温维佳. 场诱导软物质智能材料研究进展. 物理学报, 2016, 65(18): 188301. doi: 10.7498/aps.65.188301
    [12] 吴晨旭, 严大东, 邢向军, 厚美瑛. 软物质主要理论综述. 物理学报, 2016, 65(18): 186102. doi: 10.7498/aps.65.186102
    [13] 陈恩惠, 杨锦鸿, 李栋, 赵亚溥. 软物质中的理性连续介质力学基础. 物理学报, 2016, 65(18): 188103. doi: 10.7498/aps.65.188103
    [14] 张永元, 罗李娜, 张中月. 十字结构银纳米线的表面等离极化激元分束特性. 物理学报, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [15] 张然, 肖鑫泽, 吕超, 骆杨, 徐颖. 金纳米棒的飞秒激光组装研究. 物理学报, 2014, 63(1): 014206. doi: 10.7498/aps.63.014206
    [16] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究. 物理学报, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [17] 叶通, 高云, 尹彦. 利用聚碳酸酯模板制备的金纳米棒的表面增强Raman散射效应研究. 物理学报, 2013, 62(12): 127801. doi: 10.7498/aps.62.127801
    [18] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [19] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响. 物理学报, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [20] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究. 物理学报, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
计量
  • 文章访问数:  5667
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-13
  • 修回日期:  2016-04-05
  • 刊出日期:  2016-06-05

/

返回文章
返回