Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-voltage flexible solid state supercapacitor based on neutral hydrogel/carbon nanotube arrays

Wu Meng-Dan Zhou Sheng-Lin Ye An-Na Wang Min Zhang Xiao-Hua Yang Zhao-Hui

Citation:

High-voltage flexible solid state supercapacitor based on neutral hydrogel/carbon nanotube arrays

Wu Meng-Dan, Zhou Sheng-Lin, Ye An-Na, Wang Min, Zhang Xiao-Hua, Yang Zhao-Hui
PDF
HTML
Get Citation
  • As a new energy storage device, supercapacitor (or electrochemical capacitor) has an ultra-long cycle life, extremely high power density and enhanced energy density. It fills the gap in the energy-power spectrum between traditional capacitor and battery. In general, the traditional energy storage and conversion device cannot have a perfect trade-off between high energy density and high power density. With the rapid development of modern society, developing light, portable, safe and environmentally friendly high-performance energy storage devices has become increasingly vital. Therefore, there are numerous researches of flexible solid supercapacitors emerging at this historic moment. The selection of flexible electrode materials and that of electrolytes are crucial factors in designing the flexible solid state supercapacitors, which have been the research hotspots in recent years. Carbon nanotube array has been widely used in electrode material of super capacitors due to its excellent electrical conductivity, large specific surface area and super high chemical stability. But in assembly process, carbon nanotube array easily collapses and breaks its neat orientation because of its poor mechanical strength. In consideration of environmental contamination and practical demands, in this paper the neutral gel electrolyte is adopted to embed carbon nanotube array to form flexible composite film electrode. Besides the fact that we use hydrophilic flexible carbon cloth as current collector and neutral gel electrolyte as separator to prepare flexible devices, we compare the electrochemical properties among different devices by changing the electrolyte salt added in gel electrolyte. Meanwhile, after continuous bending and folding, the properties of flexible devices have not been significantly damaged, indicating good flexibility and mechanical stability. The specific capacity of the whole device with PVA-NaCl used as gel electrolyte increases up to 104.5 mF·cm–3, which is much higher than the specific capacity of the composite device formed by organic ionic gels with carbon nanotube array and that of the composite device formed by commercial short carbon nanotubes with hydrogels. A maximum energy density of 0.034 mW·h·cm–3 is obtained at the same time. In addition, it has good rate performance, cycling stability, suppressing self-discharge property, and good chemical stability at a high voltage of 1.6 V. Neutral gel/carbon nanotube array composite devices not only meet the needs of the era of green safety, flexible and portable folding, but also open up the future application prospects of medical implants.
      Corresponding author: Zhang Xiao-Hua, zhangxiaohua@suda.edu.cn ; Yang Zhao-Hui, yangzhaohui@suda.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20181430), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, and the Specially Appointed Professor Plan in Jiangsu Province, China (Grant Nos. SR 10800312, SR 10800215).
    [1]

    Zhang H, Cao G, Yang Y 2009 Energy Environ. Sci. 2 932Google Scholar

    [2]

    Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J 2017 Adv. Sci. (Weinheim, Ger. ) 4 1600539

    [3]

    He Y, Chen W, Gao C, Zhou J, Li X, Xie E 2013 Nanoscale 5 8799Google Scholar

    [4]

    Wei Q, Xiong F, Tan S, Huang L, Lan E H, Dunn B, Mai L 2017 Adv. Mater. 29 1602300Google Scholar

    [5]

    Zhi M, Xiang C, Li J, Li M, Wu N 2013 Nanoscale 5 72Google Scholar

    [6]

    Keum K, Lee G, Lee H, Yun J, Park H, Hong S Y, Song C, Kim J W, Ha J S 2018 ACS Appl. Mater. Interfaces 10 26248Google Scholar

    [7]

    Lu K, Song B, Gao X, Dai H, Zhang J, Ma H 2016 J. Power Sources 303 347Google Scholar

    [8]

    Jiang H, Cai X, Qian Y, Zhang C, Zhou L, Liu W, Li B, Lai L, Huang W 2017 J. Mater. Chem. A 5 23727Google Scholar

    [9]

    Han Y, Lu Y, Shen S, Zhong Y, Liu S, Xia X, Tong Y, Lu X 2018 Adv. Funct. Mater. 29 1806329

    [10]

    Sun P, Qiu M, Li M, Mai W, Cui G, Tong Y 2019 Nano Energy 55 506Google Scholar

    [11]

    Yao B, Zhang J, Kou T, Song Y, Liu T, Li Y 2017 Adv. Sci. (Weinheim, Ger. ) 4 1700107

    [12]

    Xiao X, Peng X, Jin H, Li T, Zhang C, Gao B, Hu B, Huo K, Zhou J 2013 Adv. Mater. 25 5091Google Scholar

    [13]

    Yang P, Mai W 2014 Nano Energy 8 274Google Scholar

    [14]

    Yoo J J, Balakrishnan K, Huang J, Meunier V, Sumpter B G, Srivastava A, Conway M, Reddy A L, Yu J, Vajtai R, Ajayan P M 2011 Nano Lett. 11 1423Google Scholar

    [15]

    Zhang L L, Zhao X S 2009 Chem. Soc. Rev. 38 2520Google Scholar

    [16]

    Meng C, Liu C, Chen L, Hu C, Fan S 2010 Nano Lett. 10 4025Google Scholar

    [17]

    Chen Q, Li X, Zang X, Cao Y, He Y, Li P, Wang K, Wei J, Wu D, Zhu H 2014 RSC Adv. 4 36253Google Scholar

    [18]

    Lota G, Fic K, Frackowiak E 2011 Energy Environ. Sci. 4 1592Google Scholar

    [19]

    Batisse N, Raymundo-Piñero E 2017 J. Power Sources 348 168Google Scholar

    [20]

    Wang G, Lu X, Ling Y, Zhai T, Wang H, Tong Y, Li Y 2012 ACS Nano 6 10296Google Scholar

    [21]

    Kim D, Yun J, Lee G, Ha J S 2014 Nanoscale 6 12034Google Scholar

    [22]

    Yang P, Xiao X, Li Y, Ding Y, Qiang P, Tan X, Mai W, Lin Z, Wu W, Li T 2013 ACS Nano 7 2617Google Scholar

    [23]

    Wei W, Cui X, Chen W, Ivey D G 2011 Chem. Soc. Rev. 40 1697Google Scholar

    [24]

    Balamurugan J, Li C, Thanh T D, Park O K, Kim N H, Lee J H 2017 J. Mater. Chem. A 5 19760Google Scholar

    [25]

    Hsia B, Marschewski J, Wang S, In J B, Carraro C, Poulikakos D, Grigoropoulos C P, Maboudian R 2014 Nanotechnology 25 055401Google Scholar

    [26]

    Kang Y J, Chung H, Han C H, Kim W 2012 Nanotechnology 23 289501Google Scholar

    [27]

    Wang G, Zhang L, Zhang J 2012 Chem. Soc. Rev. 41 797Google Scholar

    [28]

    Zhang X, Deng S, Zeng Y, Yu M, Zhong Y, Xia X, Tong Y, Lu X 2018 Adv. Funct. Mater. 28 1805618Google Scholar

    [29]

    朱畦, 袁协涛, 诸翊豪, 张晓华, 杨朝晖 2018 物理学报 67 028201Google Scholar

    Zhu Q, Yuan X T, Zhu Y H, Zhang X H, Yang Z H 2018 Acta Phys. Sin. 67 028201Google Scholar

    [30]

    Zhu Q, Yuan X, Zhu Y, Ni J, Zhang X, Yang Z 2018 Nanotechnology 29 195405Google Scholar

    [31]

    Evanko B, Boettcher S W, Yoo S J, Stucky G D 2017 ACS Energy Lett. 2 2581Google Scholar

  • 图 1  (a)垂直取向碳纳米管阵列SEM图; (b)水凝胶包埋后碳管阵列图

    Figure 1.  (a) Scanning electron microscope (SEM) image of CNTA; (b) SEM image of CNTA after hydrogel embedding.

    图 3  PVA-CH3COONa/CNTA复合器件的电化学性能测试 (a) 10−200 mV/s扫速下循环伏安曲线(CV); (b)不同扫速下的瞬时电容图; (c) 0.51−10.2 mA·cm–3不同电流密度下的恒流充放电曲线(GCD); (d)比电容随电流密度变化图; (e) 0.01−100k Hz频率下器件EIS; (f)5000次循环充放电下器件稳定图

    Figure 3.  Electrochemical performance test of PVA-CH3COONa/CNTA composite device: (a) CV curves at different scan rates ranging from 10 to 200 mV/s; (b) instantaneous capacitance diagram at different scan rates; (c) galvanostatic charge-discharge (GCD) curves at different current densities (0.51–10.2 mA·cm–3); (d) evolution of specific capacitance versus current density; (e) Nyquist plot of the device at a frequency range from 0.01 to 100k Hz; (f) cyclic stability of the device during 5000 charging-discharging cycles.

    图 4  (a)柔性器件图; (b)和(c)为弯曲前后器件图; (d)弯曲80次前后器件CV曲线对比图

    Figure 4.  (a)−(c) The original flexible device, bend and recovery processes, respectively; (d) CV curves comparison of the flexible device before and after being bent over 80 times at 50 mV/s scan rate.

    图 2  中性水凝胶复合碳纳米管阵列柔性固态超级电容器的制备流程图

    Figure 2.  Schematic of the fabrication of neutral hydrogel/CNTA composite flexible solid state supercapacitor.

    图 5  (a) 50 mV/s扫速下CV对比图; (b) 5.1 mA·cm–3电流密度下GCD对比图; (c) EIS对比图; (d)能量-功率密度对比图; (e) 5000次循环稳定性对比图

    Figure 5.  Comparison of electrochemical properties of different neutral gel/CNTA composite devices: (a) CV comparison diagram at 50 mV/s scan rate; (b) GCD comparison diagram at 5.1 mA·cm–3 current density; (c) EIS Nyquist plots obtained from the electrochemical impedance test for different samples; (d) Ragone plots of the different samples; (e) the cyclic performances of the different samples for 5000 cycles.

    图 6  PVA-NaCl/CNTA和PVA-NaCl/CCNT复合器件的电化学性能测试对比 (a) 50 mV/s扫速下CV对比图; (b) 0.69 mA·cm–2电流密度下GCD对比图; (c)比电容随电流密度变化图; (d)高频下EIS对比图

    Figure 6.  Comparison of electrochemical properties of PVA-NaCl/CNTA and PVA-NaCl/CCNT composite devices: (a) CV comparison diagram at 50 mV/s scan rate; (b) GCD comparison diagram at 0.69 mA·cm–2 current density; (c) diagram of specific capacitance changing with current density; (d) EIS comparison diagram at high frequency.

    图 7  PVA-NaCl/CNTA复合器件的电化学性能测试 (a) 50 mV/s扫速下0.8−1.6 V不同电压范围内CV曲线图; (b) 10−200 mV/s扫速下高电位CV曲线图; (c) 分别基于取向阵列和碳管粉末的器件自放电对比图

    Figure 7.  Electrochemical performance test of PVA-NaCl/CNTA composite device: (a) CV curves in different voltages ranging from 0.8 to 1.6 V at 50 mV/s scan rate; (b) high-potential CV curves over the scan rates ranging from 10 to 200 mV/s; (c) self-discharge comparison diagram based on CNTA and CCNT respectively.

  • [1]

    Zhang H, Cao G, Yang Y 2009 Energy Environ. Sci. 2 932Google Scholar

    [2]

    Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J 2017 Adv. Sci. (Weinheim, Ger. ) 4 1600539

    [3]

    He Y, Chen W, Gao C, Zhou J, Li X, Xie E 2013 Nanoscale 5 8799Google Scholar

    [4]

    Wei Q, Xiong F, Tan S, Huang L, Lan E H, Dunn B, Mai L 2017 Adv. Mater. 29 1602300Google Scholar

    [5]

    Zhi M, Xiang C, Li J, Li M, Wu N 2013 Nanoscale 5 72Google Scholar

    [6]

    Keum K, Lee G, Lee H, Yun J, Park H, Hong S Y, Song C, Kim J W, Ha J S 2018 ACS Appl. Mater. Interfaces 10 26248Google Scholar

    [7]

    Lu K, Song B, Gao X, Dai H, Zhang J, Ma H 2016 J. Power Sources 303 347Google Scholar

    [8]

    Jiang H, Cai X, Qian Y, Zhang C, Zhou L, Liu W, Li B, Lai L, Huang W 2017 J. Mater. Chem. A 5 23727Google Scholar

    [9]

    Han Y, Lu Y, Shen S, Zhong Y, Liu S, Xia X, Tong Y, Lu X 2018 Adv. Funct. Mater. 29 1806329

    [10]

    Sun P, Qiu M, Li M, Mai W, Cui G, Tong Y 2019 Nano Energy 55 506Google Scholar

    [11]

    Yao B, Zhang J, Kou T, Song Y, Liu T, Li Y 2017 Adv. Sci. (Weinheim, Ger. ) 4 1700107

    [12]

    Xiao X, Peng X, Jin H, Li T, Zhang C, Gao B, Hu B, Huo K, Zhou J 2013 Adv. Mater. 25 5091Google Scholar

    [13]

    Yang P, Mai W 2014 Nano Energy 8 274Google Scholar

    [14]

    Yoo J J, Balakrishnan K, Huang J, Meunier V, Sumpter B G, Srivastava A, Conway M, Reddy A L, Yu J, Vajtai R, Ajayan P M 2011 Nano Lett. 11 1423Google Scholar

    [15]

    Zhang L L, Zhao X S 2009 Chem. Soc. Rev. 38 2520Google Scholar

    [16]

    Meng C, Liu C, Chen L, Hu C, Fan S 2010 Nano Lett. 10 4025Google Scholar

    [17]

    Chen Q, Li X, Zang X, Cao Y, He Y, Li P, Wang K, Wei J, Wu D, Zhu H 2014 RSC Adv. 4 36253Google Scholar

    [18]

    Lota G, Fic K, Frackowiak E 2011 Energy Environ. Sci. 4 1592Google Scholar

    [19]

    Batisse N, Raymundo-Piñero E 2017 J. Power Sources 348 168Google Scholar

    [20]

    Wang G, Lu X, Ling Y, Zhai T, Wang H, Tong Y, Li Y 2012 ACS Nano 6 10296Google Scholar

    [21]

    Kim D, Yun J, Lee G, Ha J S 2014 Nanoscale 6 12034Google Scholar

    [22]

    Yang P, Xiao X, Li Y, Ding Y, Qiang P, Tan X, Mai W, Lin Z, Wu W, Li T 2013 ACS Nano 7 2617Google Scholar

    [23]

    Wei W, Cui X, Chen W, Ivey D G 2011 Chem. Soc. Rev. 40 1697Google Scholar

    [24]

    Balamurugan J, Li C, Thanh T D, Park O K, Kim N H, Lee J H 2017 J. Mater. Chem. A 5 19760Google Scholar

    [25]

    Hsia B, Marschewski J, Wang S, In J B, Carraro C, Poulikakos D, Grigoropoulos C P, Maboudian R 2014 Nanotechnology 25 055401Google Scholar

    [26]

    Kang Y J, Chung H, Han C H, Kim W 2012 Nanotechnology 23 289501Google Scholar

    [27]

    Wang G, Zhang L, Zhang J 2012 Chem. Soc. Rev. 41 797Google Scholar

    [28]

    Zhang X, Deng S, Zeng Y, Yu M, Zhong Y, Xia X, Tong Y, Lu X 2018 Adv. Funct. Mater. 28 1805618Google Scholar

    [29]

    朱畦, 袁协涛, 诸翊豪, 张晓华, 杨朝晖 2018 物理学报 67 028201Google Scholar

    Zhu Q, Yuan X T, Zhu Y H, Zhang X H, Yang Z H 2018 Acta Phys. Sin. 67 028201Google Scholar

    [30]

    Zhu Q, Yuan X, Zhu Y, Ni J, Zhang X, Yang Z 2018 Nanotechnology 29 195405Google Scholar

    [31]

    Evanko B, Boettcher S W, Yoo S J, Stucky G D 2017 ACS Energy Lett. 2 2581Google Scholar

  • [1] Zhang Wen-Bo, Liu Shao-Cheng, Liao Liang, Wei Wen-Yin, Li Le-Tian, Wang Liang, Yan Ning, Qian Jin-Ping, Zang Qing. Development of charge-discharge circuitry based on supercapacitor and its application to limiter probe diagnostics in EAST. Acta Physica Sinica, 2024, 73(6): 065203. doi: 10.7498/aps.73.20231697
    [2] Sun Zhi-Wei, He Yan, Tang Yuan-Zheng. Water distribution in confined space of single-wall carbon nanotube. Acta Physica Sinica, 2021, 70(6): 060201. doi: 10.7498/aps.70.20201523
    [3] Zhang Xin, Chen Xing, Bai Tian, You Xing-Yan, Zhao Xin, Liu Xiang-Yang, Ye Mei-Dan. Recent advances in flexible fiber-shaped supercapacitors. Acta Physica Sinica, 2020, 69(17): 178201. doi: 10.7498/aps.69.20200159
    [4] Shao Guang-Wei, Guo Shan-Shan, Yu Rui, Chen Nan-Liang, Ye Mei-Dan, Liu Xiang-Yang. Stretchable supercapacitors: Electrodes, electrolytes, and devices. Acta Physica Sinica, 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [5] Ye An-Na, Zhang Xiao-Hua, Yang Zhao-Hui. Redox-enhanced solid-state supercapacitor based on hydroquinone-containing gel electrolyte/ carbon nanotube arrays. Acta Physica Sinica, 2020, 69(12): 126101. doi: 10.7498/aps.69.20200204
    [6] Zhu Qi, Yuan Xie-Tao, Zhu Yi-Hao, Zhang Xiao-Hua, Yang Zhao-Hui. Flexible solid-state supercapacitors based on shrunk high-density aligned carbon nanotube arrays. Acta Physica Sinica, 2018, 67(2): 028201. doi: 10.7498/aps.67.20171855
    [7] Yang Xiu-Tao, Liang Zhong-Guan, Yuan Yu-Jia, Yang Jun-Liang, Xia Hui. Preparation and electrochemical performance of porous carbon nanosphere. Acta Physica Sinica, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [8] Zhang Cheng, Deng Ming-Sen, Cai Shao-Hong. Co3O4 mesoporous nanostructure supported by Ni foam as high-performance supercapacitor electrodes. Acta Physica Sinica, 2017, 66(12): 128201. doi: 10.7498/aps.66.128201
    [9] Guo Li-Qiang, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning. Dual in-plane-gate coupled IZO thin film transistor based on capacitive coupling effect in KH550-GO solid electrolyte. Acta Physica Sinica, 2016, 65(17): 178501. doi: 10.7498/aps.65.178501
    [10] Li Yang, Song Yong-Shun, Li Ming, Zhou Xin. Simulation studies on the diffusion of water solitons in carbon nanotube. Acta Physica Sinica, 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [11] Han Dian-Rong, Zhu Xing-Feng, Dai Ya-Fei, Cheng Cheng-Ping, Luo Cheng-Lin. Water permeability in carbon nanotube arrays. Acta Physica Sinica, 2015, 64(23): 230201. doi: 10.7498/aps.64.230201
    [12] Quan Jun, Liu Yi-Xing, Yu Ya-Bin. Dynamic response of the coherent parallel-plate capacitor to the external field. Acta Physica Sinica, 2010, 59(2): 1237-1242. doi: 10.7498/aps.59.1237
    [13] He Chun-Shan, Wang Wei-Liang, Chen Gui-Hua, Li Zhi-Bing. Image potential effect on field emission from arrays of carbon nanotubes. Acta Physica Sinica, 2009, 58(13): 241-S245. doi: 10.7498/aps.58.241
    [14] Chen Xue-Feng, Li Hua-Mei, Li Dong-Jie, Cao Fei, Dong Xian-Lin. Study on slim-loop ferroelectric ceramics for high-power pulse capacitors. Acta Physica Sinica, 2008, 57(11): 7298-7304. doi: 10.7498/aps.57.7298
    [15] Chen Guo-Dong, Wang Liu-Ding, Zhang Jiao-Qiang, Cao De-Cai, An Bo, Ding Fu-Cai, Liang Jin-Kui. First-principles study of electron field emission from the carbon nanotube with B doping and H2O adsorption. Acta Physica Sinica, 2008, 57(11): 7164-7167. doi: 10.7498/aps.57.7164
    [16] Zhang Chun-Mei, Bian Xin-Chao, Chen Qiang, Fu Ya-Bo, Zhang Yue-Fei. Effect and mechanism of water on carbon nanotubes growth. Acta Physica Sinica, 2008, 57(7): 4602-4606. doi: 10.7498/aps.57.4602
    [17] Han Dao-Li, Zhao Yuan-Li, Zhao Hai-Bo, Song Tian-Fu, Liang Er-Jun. Growth of well-aligned carbon nanotubes arrays by chemical vapor deposition. Acta Physica Sinica, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [18] Ouyang Yu, Fang Yan. The effects of H2O on the synthesis of SWCNTs by decomposing CH4 in Ar at 800℃. Acta Physica Sinica, 2005, 54(2): 578-581. doi: 10.7498/aps.54.578
    [19] Song Jiao-Hua, Zhang Geng-Min, Zhang Zhao-Xiang, Sun Ming-Yan, Xue Zeng-Quan. A study of field emission of an array of multi-walled carbon nanotubes*. Acta Physica Sinica, 2004, 53(12): 4392-4397. doi: 10.7498/aps.53.4392
    [20] Zhang Zhong-hua. PERTURBATION METHOD FOR VARIABLE BOUNDARY PROBLEMS AND APPLICATION TO THE EVALUATION OF ERRORS IN PRECISE CAPACITORS. Acta Physica Sinica, 1979, 28(4): 563-570. doi: 10.7498/aps.28.563
Metrics
  • Abstract views:  10646
  • PDF Downloads:  124
  • Cited By: 0
Publishing process
  • Received Date:  27 December 2018
  • Accepted Date:  11 March 2019
  • Available Online:  01 May 2019
  • Published Online:  20 May 2019

/

返回文章
返回