Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Axial diagnosis of radio-frequency capacitively coupled Ar/O2 plasma

Cao Li-Yang Ma Xiao-Ping Deng Li-Li Lu Man-Ting Xin Yu

Citation:

Axial diagnosis of radio-frequency capacitively coupled Ar/O2 plasma

Cao Li-Yang, Ma Xiao-Ping, Deng Li-Li, Lu Man-Ting, Xin Yu
PDF
HTML
Get Citation
  • The capacitively coupled Ar plasma containing oxygen, driven by a radio frequency of 27.12 MHz, is investigated by laser-induced photo-detachment technique assisted with a Langmuir probe. The plasmas with different amounts of oxygen are obtained by changing the flow of Ar and oxygen, each of which is controlled by a mass flow controller. The axial distribution of plasma characteristic can be measured by changing the relative axial position of the Langmuir probe between the parallel electrodes. The electron density and electron temperature are calculated from the current-voltage curve measured by the scanning Langmuir probe, and the electronegativity is obtained from the current curves of the probe with the laser-induced photo-detachment technique. The negative ion density can be calculated from the electron density and the electronegativity. It is shown that with oxygen flow rate increasing, the dissociative attachment of oxygen molecules with electrons will consume the electrons with the middle energy in the electron energy probability function (EEPF) measured by Langmuir probe. The EEPF evolves from Druyvesteyn to Maxwellian distribution due to the thermalization by the e-e interaction with applied power increasing. It is worth mentioning that a depression in the EEPF curve will appear when discharging high-pressure Ar gas containing oxygen. This depression can also be caused by the dissociative attachment of oxygen molecules with electrons where the threshold energy is around 4.5 eV. The axial profile of the electron density is calculated from the EEPF changing from a linear rise in pure Ar plasma to a flater phase of the distribution due to the negative ions such as oxygen introduced into the plasma. The electron temperature changes a little at different axial positions. The rise of negative ion density nearby the sheath of powered electrode is due to the dissociative attachment caused by the collision of oxygen molecules with energetic electrons. In addition, the axial distribution of electronegativity takes on a shape of spoon, which results from the consequence of generation and loss of negative ions in the process of the ambipolar-electric-field-driven diffusion to the plasma center.
      Corresponding author: Xin Yu, yuxin@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675117, 11175127) and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, China
    [1]

    Lieberman M A, Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Progressing (New York: Wiley) pp1−5

    [2]

    Levitskii S M 1957 Sov. Phys. Tech. Phys. 2 887

    [3]

    Godyak V A, Khanneh A S 1986 IEEE Trans. Plasma Sci. 14 112Google Scholar

    [4]

    Lieberman M A, Godyak V A 1998 IEEE Trans. Plasma Sci. 26 955Google Scholar

    [5]

    Aliev Y M, Kaganovich I D, Schluter H 1997 Phys. Plasmas. 4 2413Google Scholar

    [6]

    Kaganovich I D 2002 Phys. Rev. Lett. 89 265006Google Scholar

    [7]

    Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002Google Scholar

    [8]

    Liu Y X, Zhang Q Z, Jiang W, Jiang X Z, Lu W Q, Wang Y N 2012 Plasma Sources Sci. Technol. 21 035010Google Scholar

    [9]

    Turner M M 1995 Phys. Rev. Lett. 75 1312Google Scholar

    [10]

    Schulze J, Donko Z, Lafleur T, Wilczek S, Brinkmann R P 2018 Plasma Sources Sci. Technol. 27 055010Google Scholar

    [11]

    Tsendin L D 1989 Sov. Phys. Tech. Phys. 34 11

    [12]

    Schulze J, Derzsi A, Dittmann K, Hemke T, Meichsner J, Donko Z 2011 Phys. Rev. Lett. 107 275001Google Scholar

    [13]

    Schulze J, Donko Z, Derzsi A, Korolov I, Schuengel E 2015 Plasma Sources Sci. Technol. 24 015019Google Scholar

    [14]

    Liu Y X, Schüngel E, Korolov I, Donkó Z, Wang Y N, Schulze J 2016 Phys. Rev. Lett. 116 255002Google Scholar

    [15]

    Liu Y X, Korolov I, Schüngel E, Wang Y N, Donkó Z, Schulze J 2017 Phys. Plasma. 24 073512Google Scholar

    [16]

    Irving S 1968 Proc. Kodak Photoresist Seminar (Rochester, New York: Eastman, Kodak) pp26−9

    [17]

    Chashmejahanbin M R, Salimi A and Ershad Langroudi A 2014 Int. J. Adhes. Adhes. 49 44Google Scholar

    [18]

    Vesel A, Mozetic M 2017 J. Phys. D: Appl. Phys. 50 293001Google Scholar

    [19]

    Kawai Y, Konishi N, Watanabe J, Ohmi T 1994 Appl. Phys. Lett. 64 2223Google Scholar

    [20]

    Hess D W 1999 IBM J. Res. Dev. 43 127Google Scholar

    [21]

    Gudmundsson J T, Ventéjou B 2015 J. Appl. Phys. 118 153302Google Scholar

    [22]

    Gudmundsson J T, Proto A 2019 Plasma Sources Sci. Technol. 28 045012Google Scholar

    [23]

    Gudmundsson J T, Snorrason D I 2017 J. Appl. Phys. 122 193302Google Scholar

    [24]

    Gudmundsson J T, Snorrason D Hannesdottir H 2018 Plasma Sources Sci. Technol. 27 025009Google Scholar

    [25]

    Gudmundsson J T, Lieberman M A 2015 Plasma Sources Sci. Technol. 24 035016Google Scholar

    [26]

    Wegner T, Kullig C, Meichsner J 2015 Contrib. Plasma Phys. 55 728736Google Scholar

    [27]

    Liu Y X, Zhang Q Z, Liu J, Song Y H, Bogaerts A, Wang Y N 2012 Appl. Phys. Lett. 101 114101Google Scholar

    [28]

    You K H, Schulze J, Derzsi A, Donk Z, Yeom H J, Kim J H, Seong D J, Lee H C 2019 Phys. Plasmas 26 013503Google Scholar

    [29]

    Kechkar S, Swift P, Kelly S, Kumar S, Daniels S Turner M 2017 Plasma Sources Sci. Technol. 26 065009Google Scholar

    [30]

    Bacal M, Hamilton G W 1979 Phys. Rev. Lett. 42 1538Google Scholar

    [31]

    Devynck P, Auvray J, Bacal M, Berlemont P, Brunetear J, Leroy R, Stern R A 1989 Rev. Sci. Instrum. 60 2873Google Scholar

    [32]

    Balgiiti-Sube F E, Baksht F G, Bacal M 1996 Rev. Sci. Instrum. 67 2221Google Scholar

    [33]

    Nikitin A G, Balghiti F Ei, Bacal M 1996 Plasma Sources Sci. Technol. 5 37Google Scholar

    [34]

    Hamabe M, Oka Y, Tsumori O, Kuroda T, Bacal M 1998 Rev. Sci. Instrum. 69 1298Google Scholar

    [35]

    Nishiura M, Sasao M, Matsumoto Y, Hamabe M, Wada M, Yamaoka H, Bacal M 2002 Rev. Sci. Instrum. 73 973Google Scholar

    [36]

    Bryant P M, Bradley J W 2013 Plasma Sources Sci. Technol. 22 015014Google Scholar

    [37]

    You S D, Dodd R, Edwards A, Bradley J W 2010 J. Phys. D: Appl. Phys. 43 505205Google Scholar

    [38]

    Dodd R, You S D, Bryant P M, Bradley J W 2010 Plasma Sources Sci. Technol. 19 015021Google Scholar

    [39]

    Scribbins S, Bowes M, Bradley J W 2013 J. Phys. D: Appl. Phys. 46 045203Google Scholar

    [40]

    Bowes M, Bradley J W 2014 J. Phys. D: Appl. Phys. 47 265202Google Scholar

    [41]

    Oudini N, Sirse N, Taccogna F, Ellingboe A R, Bendib A 2016 Appl. Phys. Lett. 109 124101Google Scholar

    [42]

    Oudini N, Sirse N, Benallal R, Taccogna F, Anesland A, Bendib A, Ellingboe A R 2015 Phys. Plasmas 22 073509Google Scholar

    [43]

    Oudini N, Taccogna F, Bendib A, Anesland A 2014 Phys. Plasmas 21 063515Google Scholar

    [44]

    Conway J, Sirse N, Karkari S K, Turner M M 2010 Plasma Sources Sci. Technol. 19 065002Google Scholar

    [45]

    Sirse N, Karkari S K, Mujawar M A, Conway J, Turner M M 2011 Plasma Sources Sci. Technol. 20 055003Google Scholar

    [46]

    Sirse N, Oudini O, Bendib A, Ellingboe A R 2016 Plasma Sources Sci. Technol. 25 04LT01Google Scholar

    [47]

    Kullig C, Dittmann K, Meichsner J 2010 Plasma Sources Sci. Technol. 19 065011Google Scholar

    [48]

    Kullig C, Dittmann K, Meichsner J 2012 Phys. Plasmas 19 073517Google Scholar

    [49]

    Dittmann K, Kullig C, Meichsner J 2012 Plasma Phys. Controlled Fusion 54 124038Google Scholar

    [50]

    Kullig C, Dittmann K, Wegner T, Sheykin I, Matyash K, Loffhagen D, Schnerder R, Meichsner J 2012 Contrib. Plasma Phys. 52 836Google Scholar

    [51]

    Kullig C, Wegner Th, Meichsner J 2015 Phys. Plasmas 22 043515Google Scholar

    [52]

    Zhao Y F, Zhou Y, Ma X P, Cao L Y, Zheng F G, Xin Y 2019 Phys. Plasmas 26 033502Google Scholar

    [53]

    杨郁, 唐成双, 赵一帆, 虞一青, 辛煜 2017 物理学报 66 185202Google Scholar

    Yang Y, Tang C S, Zhao Y F, Y Y Q, Xin Y 2017 Acta Phys. Sin. 66 185202Google Scholar

    [54]

    Gudmundsson J T, Kouznetsov I G, Patel K K, Lieberman M A 2001 J. Phys. D: Appl. Phys. 34 1100Google Scholar

    [55]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [56]

    Godyak A, Piejak R B 1990 Phys. Rev. Lett. 65 996Google Scholar

    [57]

    Trunec D, Spanel P, Smith D 2003 Chem. Phys. Lett. 372 728Google Scholar

    [58]

    Itikawa Y 2009 J. Phys. Chem. Ref. Data. 38 1Google Scholar

    [59]

    迈克尔·A·力伯曼, 阿伦·J·里登伯格 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第554页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Processing (Beijing: Science Press) p554 (in Chinese)

    [60]

    王涛, 王俊, 唐成双, 杨郁, 辛煜 2017 核聚变与等离子体物理 37 1Google Scholar

    Wang T, Wang J, Tang C S, Yang Y, Xin Y 2017 Nucl. Fusion Plasma Phys. 37 1Google Scholar

    [61]

    Lee S H, Iza F, Lee J K 2006 Phys. Plasmas 13 057102Google Scholar

  • 图 1  安装有Nd:YAG激光器和朗缪尔探针的电容耦合等离子体实验装置

    Figure 1.  The capacitively coupled plasma experimental device equipped with a Nd:YAG laser and a Langmuir probe.

    图 2  朗缪尔探针结构示意图

    Figure 2.  The schematic diagram of the structure of Langmuir probe.

    图 3  等离子体中心位置处探针测得的典型电流曲线

    Figure 3.  The typical current curves measured by Langmuir probe at z = 0 in the plasma.

    图 4  不同气压和功率条件下极板中心处EEPF随含氧量的变化情况 (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W

    Figure 4.  The dependence of EEPF on the content of O2 for various discharge pressures and powers at z = 0 mm: (a) 2 Pa-50 W;(b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W.

    图 5  不同气压和功率条件下电子密度随含氧量的轴向分布情况 (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W

    Figure 5.  The axial distribution of electron density on the content of O2 for various discharge pressures and powers: (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W.

    图 6  不同气压和功率条件下电子温度随含氧量的轴向分布情况 (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-15 0 W; (f) 12 Pa-150 W

    Figure 6.  The axial distribution of electron temperature on the content of O2 for various discharge pressures and powers: (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W.

    图 7  不同气压和功率条件下电负度随含氧量的轴向分布情况 (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W

    Figure 7.  The axial distribution of the electronegativity on the content of O2 for various discharge pressures and powers: (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W.

    图 8  不同气压和功率条件下负离子密度随含氧量的轴向分布情况 (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W

    Figure 8.  The axial distribution of negative ion density on the content of O2 for various discharge pressures and powers: (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W.

  • [1]

    Lieberman M A, Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Progressing (New York: Wiley) pp1−5

    [2]

    Levitskii S M 1957 Sov. Phys. Tech. Phys. 2 887

    [3]

    Godyak V A, Khanneh A S 1986 IEEE Trans. Plasma Sci. 14 112Google Scholar

    [4]

    Lieberman M A, Godyak V A 1998 IEEE Trans. Plasma Sci. 26 955Google Scholar

    [5]

    Aliev Y M, Kaganovich I D, Schluter H 1997 Phys. Plasmas. 4 2413Google Scholar

    [6]

    Kaganovich I D 2002 Phys. Rev. Lett. 89 265006Google Scholar

    [7]

    Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002Google Scholar

    [8]

    Liu Y X, Zhang Q Z, Jiang W, Jiang X Z, Lu W Q, Wang Y N 2012 Plasma Sources Sci. Technol. 21 035010Google Scholar

    [9]

    Turner M M 1995 Phys. Rev. Lett. 75 1312Google Scholar

    [10]

    Schulze J, Donko Z, Lafleur T, Wilczek S, Brinkmann R P 2018 Plasma Sources Sci. Technol. 27 055010Google Scholar

    [11]

    Tsendin L D 1989 Sov. Phys. Tech. Phys. 34 11

    [12]

    Schulze J, Derzsi A, Dittmann K, Hemke T, Meichsner J, Donko Z 2011 Phys. Rev. Lett. 107 275001Google Scholar

    [13]

    Schulze J, Donko Z, Derzsi A, Korolov I, Schuengel E 2015 Plasma Sources Sci. Technol. 24 015019Google Scholar

    [14]

    Liu Y X, Schüngel E, Korolov I, Donkó Z, Wang Y N, Schulze J 2016 Phys. Rev. Lett. 116 255002Google Scholar

    [15]

    Liu Y X, Korolov I, Schüngel E, Wang Y N, Donkó Z, Schulze J 2017 Phys. Plasma. 24 073512Google Scholar

    [16]

    Irving S 1968 Proc. Kodak Photoresist Seminar (Rochester, New York: Eastman, Kodak) pp26−9

    [17]

    Chashmejahanbin M R, Salimi A and Ershad Langroudi A 2014 Int. J. Adhes. Adhes. 49 44Google Scholar

    [18]

    Vesel A, Mozetic M 2017 J. Phys. D: Appl. Phys. 50 293001Google Scholar

    [19]

    Kawai Y, Konishi N, Watanabe J, Ohmi T 1994 Appl. Phys. Lett. 64 2223Google Scholar

    [20]

    Hess D W 1999 IBM J. Res. Dev. 43 127Google Scholar

    [21]

    Gudmundsson J T, Ventéjou B 2015 J. Appl. Phys. 118 153302Google Scholar

    [22]

    Gudmundsson J T, Proto A 2019 Plasma Sources Sci. Technol. 28 045012Google Scholar

    [23]

    Gudmundsson J T, Snorrason D I 2017 J. Appl. Phys. 122 193302Google Scholar

    [24]

    Gudmundsson J T, Snorrason D Hannesdottir H 2018 Plasma Sources Sci. Technol. 27 025009Google Scholar

    [25]

    Gudmundsson J T, Lieberman M A 2015 Plasma Sources Sci. Technol. 24 035016Google Scholar

    [26]

    Wegner T, Kullig C, Meichsner J 2015 Contrib. Plasma Phys. 55 728736Google Scholar

    [27]

    Liu Y X, Zhang Q Z, Liu J, Song Y H, Bogaerts A, Wang Y N 2012 Appl. Phys. Lett. 101 114101Google Scholar

    [28]

    You K H, Schulze J, Derzsi A, Donk Z, Yeom H J, Kim J H, Seong D J, Lee H C 2019 Phys. Plasmas 26 013503Google Scholar

    [29]

    Kechkar S, Swift P, Kelly S, Kumar S, Daniels S Turner M 2017 Plasma Sources Sci. Technol. 26 065009Google Scholar

    [30]

    Bacal M, Hamilton G W 1979 Phys. Rev. Lett. 42 1538Google Scholar

    [31]

    Devynck P, Auvray J, Bacal M, Berlemont P, Brunetear J, Leroy R, Stern R A 1989 Rev. Sci. Instrum. 60 2873Google Scholar

    [32]

    Balgiiti-Sube F E, Baksht F G, Bacal M 1996 Rev. Sci. Instrum. 67 2221Google Scholar

    [33]

    Nikitin A G, Balghiti F Ei, Bacal M 1996 Plasma Sources Sci. Technol. 5 37Google Scholar

    [34]

    Hamabe M, Oka Y, Tsumori O, Kuroda T, Bacal M 1998 Rev. Sci. Instrum. 69 1298Google Scholar

    [35]

    Nishiura M, Sasao M, Matsumoto Y, Hamabe M, Wada M, Yamaoka H, Bacal M 2002 Rev. Sci. Instrum. 73 973Google Scholar

    [36]

    Bryant P M, Bradley J W 2013 Plasma Sources Sci. Technol. 22 015014Google Scholar

    [37]

    You S D, Dodd R, Edwards A, Bradley J W 2010 J. Phys. D: Appl. Phys. 43 505205Google Scholar

    [38]

    Dodd R, You S D, Bryant P M, Bradley J W 2010 Plasma Sources Sci. Technol. 19 015021Google Scholar

    [39]

    Scribbins S, Bowes M, Bradley J W 2013 J. Phys. D: Appl. Phys. 46 045203Google Scholar

    [40]

    Bowes M, Bradley J W 2014 J. Phys. D: Appl. Phys. 47 265202Google Scholar

    [41]

    Oudini N, Sirse N, Taccogna F, Ellingboe A R, Bendib A 2016 Appl. Phys. Lett. 109 124101Google Scholar

    [42]

    Oudini N, Sirse N, Benallal R, Taccogna F, Anesland A, Bendib A, Ellingboe A R 2015 Phys. Plasmas 22 073509Google Scholar

    [43]

    Oudini N, Taccogna F, Bendib A, Anesland A 2014 Phys. Plasmas 21 063515Google Scholar

    [44]

    Conway J, Sirse N, Karkari S K, Turner M M 2010 Plasma Sources Sci. Technol. 19 065002Google Scholar

    [45]

    Sirse N, Karkari S K, Mujawar M A, Conway J, Turner M M 2011 Plasma Sources Sci. Technol. 20 055003Google Scholar

    [46]

    Sirse N, Oudini O, Bendib A, Ellingboe A R 2016 Plasma Sources Sci. Technol. 25 04LT01Google Scholar

    [47]

    Kullig C, Dittmann K, Meichsner J 2010 Plasma Sources Sci. Technol. 19 065011Google Scholar

    [48]

    Kullig C, Dittmann K, Meichsner J 2012 Phys. Plasmas 19 073517Google Scholar

    [49]

    Dittmann K, Kullig C, Meichsner J 2012 Plasma Phys. Controlled Fusion 54 124038Google Scholar

    [50]

    Kullig C, Dittmann K, Wegner T, Sheykin I, Matyash K, Loffhagen D, Schnerder R, Meichsner J 2012 Contrib. Plasma Phys. 52 836Google Scholar

    [51]

    Kullig C, Wegner Th, Meichsner J 2015 Phys. Plasmas 22 043515Google Scholar

    [52]

    Zhao Y F, Zhou Y, Ma X P, Cao L Y, Zheng F G, Xin Y 2019 Phys. Plasmas 26 033502Google Scholar

    [53]

    杨郁, 唐成双, 赵一帆, 虞一青, 辛煜 2017 物理学报 66 185202Google Scholar

    Yang Y, Tang C S, Zhao Y F, Y Y Q, Xin Y 2017 Acta Phys. Sin. 66 185202Google Scholar

    [54]

    Gudmundsson J T, Kouznetsov I G, Patel K K, Lieberman M A 2001 J. Phys. D: Appl. Phys. 34 1100Google Scholar

    [55]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [56]

    Godyak A, Piejak R B 1990 Phys. Rev. Lett. 65 996Google Scholar

    [57]

    Trunec D, Spanel P, Smith D 2003 Chem. Phys. Lett. 372 728Google Scholar

    [58]

    Itikawa Y 2009 J. Phys. Chem. Ref. Data. 38 1Google Scholar

    [59]

    迈克尔·A·力伯曼, 阿伦·J·里登伯格 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第554页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Processing (Beijing: Science Press) p554 (in Chinese)

    [60]

    王涛, 王俊, 唐成双, 杨郁, 辛煜 2017 核聚变与等离子体物理 37 1Google Scholar

    Wang T, Wang J, Tang C S, Yang Y, Xin Y 2017 Nucl. Fusion Plasma Phys. 37 1Google Scholar

    [61]

    Lee S H, Iza F, Lee J K 2006 Phys. Plasmas 13 057102Google Scholar

  • [1] Zhang Wen-Bo, Liu Shao-Cheng, Liao Liang, Wei Wen-Yin, Li Le-Tian, Wang Liang, Yan Ning, Qian Jin-Ping, Zang Qing. Development of charge-discharge circuitry based on supercapacitor and its application to limiter probe diagnostics in EAST. Acta Physica Sinica, 2024, 73(6): 065203. doi: 10.7498/aps.73.20231697
    [2] Wang Xing-Sheng, Ma Yan-Ming, Gao Xun, Lin Jing-Quan. Near infrared characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(2): 029502. doi: 10.7498/aps.69.20190753
    [3] Liu Jia-He, Lu Jia-Zhe, Lei Jun-Jie, Gao Xun, Lin Jing-Quan. Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [4] Lin Zhi-Yi, Jian Jun-Tao, Wang Xiao-Hua, Hang Wei. Expansion characteristics of atom and ion component in laser-induced aluminum plasma. Acta Physica Sinica, 2018, 67(18): 185201. doi: 10.7498/aps.67.20180595
    [5] Yang Yu, Tang Cheng-Shuang, Zhao Yi-Fan, Yu Yi-Qing, Xin Yu. Electronegativity of capacitively coupled Ar+O2 plasma excited at very high frequency. Acta Physica Sinica, 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [6] Li Bai-Hui, Gao Xun, Song Chao, Lin Jing-Quan. Laser induced plasma spectral characteristics of Cu with magnetically and spatially combined confinement. Acta Physica Sinica, 2016, 65(23): 235201. doi: 10.7498/aps.65.235201
    [7] Liu Chao, Guan Yi-Bing, Zhang Ai-Bing, Zheng Xiang-Zhi, Sun Yue-Qiang. The ionosphere measurement technology of Langmuir probe on China seismo-electromagnetic satellite. Acta Physica Sinica, 2016, 65(18): 189401. doi: 10.7498/aps.65.189401
    [8] Liu Yu-Feng, Zhang Lian-Shui, He Wan-Lin, Huang Yu, Du Yan-Jun, Lan Li-Juan, Ding Yan-Jun, Peng Zhi-Min. Spectroscopic study on the laser-induced breakdown flame plasma. Acta Physica Sinica, 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [9] Liu Yu-Feng, Ding Yan-Jun, Peng Zhi-Min, Huang Yu, Du Yan-Jun. Spectroscopic study on the time evolution behaviors of the laser-induced breakdown air plasma. Acta Physica Sinica, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [10] Wang Sheng-Han, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Men Zhi-Wei. Influence of laser-induced plasma on stimulated Raman scatting of OH stretching vibrational from water molecules. Acta Physica Sinica, 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [11] Li Cheng, Gao Xun, Liu Lu, Lin Jing-Quan. Evolution of laser-induced plasma spectrum intensity under magnetic field confinement. Acta Physica Sinica, 2014, 63(14): 145203. doi: 10.7498/aps.63.145203
    [12] Li Hong-Wei, Han Jian-Wei, Cai Ming-Hui, Wu Feng-Shi, Zhang Zhen-Long. Simulation of small space debris impact inducing discharge using laser-induced plasma method. Acta Physica Sinica, 2014, 63(11): 119601. doi: 10.7498/aps.63.119601
    [13] Hong Bu-Shuang, Yuan Tao, Zou Shuai, Tang Zhong-Hua, Xu Dong-Sheng, Yu Yi-Qing, Wang Xu-Sheng, Xin Yu. Influence of addifion of electronegative gases on the properties of capacitively coupled Ar plasmas. Acta Physica Sinica, 2013, 62(11): 115202. doi: 10.7498/aps.62.115202
    [14] Li Shi-Xiong, Bai Zhong-Chen, Huang Zheng, Zhang Xin, Qin Shui-Jie, Mao Wen-Xue. Study on the machining mechanism of fabrication of micro channels in fused silica substrates by laser-induced plasma. Acta Physica Sinica, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [15] Zou Shuai, Tang Zhong-Hua, Ji Liang-Liang, Su Xiao-Dong, Xin Yu. Application of floating microwave resonator probe to the measurement of electron density in electronegative capacitively coupled plasma. Acta Physica Sinica, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [16] Xia Zhi-Lin, Guo Pei-Tao, Xue Yi-Yu, Huang Cai-Hua, Li Zhan-Wang. Investigation of the plasma bursting process in short pulsed laser induced film damage. Acta Physica Sinica, 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [17] Hong Xiao-Gang, Xu Wen-Dong, Li Xiao-Gang, Zhao Cheng-Qiang, Tang Xiao-Dong. Numerical simulation of probe induced surface plasmon resonance coupling nanolithography. Acta Physica Sinica, 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [18] Li Gang, Xu Yan-Ji, Mu Ke-Jin, Nie Chao-Qun, Zhu Jun-Qiang, Zhang Yi, Li Han-Ming. Application of planar laser induced fluorescence in the investigation of the stagger electrode dielectric barrier discharge plasma. Acta Physica Sinica, 2008, 57(10): 6444-6449. doi: 10.7498/aps.57.6444
    [19] YAO RUO-HE, CHI LING-FEI, LIN XUAN-YING, SHI WANG-ZHOU, LIN KUI-XUN. THE DIAGNOSTICS OF RF GLOW DISCHARGE PLASMA BY A PROBE AND ITS DATA PROCESS. Acta Physica Sinica, 2000, 49(5): 922-925. doi: 10.7498/aps.49.922
    [20] ZHU SHI-TONG, SHEN WEN-DA. OPTICAL METRIC DESCRIPTION OF A STRONG LASER-PLASMA. Acta Physica Sinica, 1993, 42(9): 1438-1442. doi: 10.7498/aps.42.1438
Metrics
  • Abstract views:  4370
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  12 December 2020
  • Accepted Date:  24 January 2021
  • Available Online:  27 May 2021
  • Published Online:  05 June 2021

/

返回文章
返回