Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Topological Anderson insulator phase in graphene

Wang Yu Liang Yu-Lin Xing Yan-Xi

Citation:

Topological Anderson insulator phase in graphene

Wang Yu, Liang Yu-Lin, Xing Yan-Xi
PDF
Get Citation
  • Graphene, a two-dimensional material characterized by its honeycomb lattice structure, has demonstrated significant potential for applications in electronic devices. The topological Anderson insulator (TAI) represents a novel phenomenon where a system transitions into a topological phase induced by disorder. In past studies, TAI is widely found in theoretical models such as the BHZ model and the Kane-Mele model. One common feature is that these models can open topological non-trivial gaps by changing their topological mass term, but the rise of TAI is unconcerned with the gaps’ topological status. In order to investigate if the disorder-induced phase has any difference in the two situations where the clean-limit Haldane model is topological trivial or non-trivial, the Haldane model is considered in an infinitely long quasi-one-dimensional ZigZag-edged graphene ribbon in this study. The Hamiltonian and band structure of it are analyzed, and the non-equilibrium Green's function theory is employed to calculate the transport properties of ribbons under both topologically trivial and non-trivial states vs. disorder. Conductance, current density, transport coefficient and localisation length are calculated as parameters characterising the transmission properties. It is found that the system in both topological trivial or topological non-trivial state has edge states by analyzing the band structure. When the Fermi energy lies in the conduction band, the conductance of the system decreases rapidly at both weak and strong disorder strengths, regardless of whether the system is topological non-trivial or not. At moderate disorder strengths, the conductance of topological non-trivial systems keeps stable with value one, indicating that a topological Anderson insulator phase rises in the system. Meanwhile, the decrease of conductance noticeably slows down for topological trivial systems. Calculations of local current density show that both systems exhibit robust edge states, with topologically protected edge states showing greater robustness. An analysis of the transmission coefficients of edge and bulk states reveals that the coexistence of bulk states and robust edge states is fundamental to the observed phenomena in the Haldane model. Under weak disorder, bulk states are localized, and the transmission coefficient of edge states decreases due to scattering into the bulk states. Under strong disorder, edge states are localized as well, resulting in zero conductance. However, at moderate disorder strength, bulk states are annihilated while robust edge states persist, thereby reducing scattering from edge states to bulk states. This enhances the transport stability of the system. The fluctuation of conduction and localisation length reveal that the metal-TAI-normal insulator transition occurs in the Haldane model with topological non-trivial gap and if the system is cylinder shape so that there are no edge states, the TAI will not occur. For the topological trivial gap case, only metal-normal insulator transition can be clearly identified. As thus, topologically protected edge states are so robust that generate a conductance plateau and it is proved that topologically trivial edge states are robust in a certain degree to resist this strength of disorder. The robustness of edge states is a crucial factor for the occurrence of the TAI phenomenon in the Haldane model.
  • [1]

    Peres N M R 2010 Rev. Mod. Phys. 82 2673

    [2]

    Peres N M R, Castro Neto A H, Guinea F 2006 Phys. Rev. B 73 195411

    [3]

    Gusynin V P, Sharapov S G 2005 Phys. Rev. Lett. 95 146801

    [4]

    Geim A K 2009 Science 324 1530

    [5]

    Das Sarma S, Adam S, Hwang E H, Rossi E 2011 Rev. Mod. Phys. 83 407

    [6]

    Li T C, Lu S P 2008 Phys. Rev. B 77 085408

    [7]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [9]

    Slonczewski J C, Weiss P R 1958 Phys. Rev. 109 272

    [10]

    Semenoff G W 1984 Phys. Rev. Lett. 53 2449

    [11]

    Thonhauser T, Vanderbilt D 2006 Phys. Rev. B 74 235111

    [12]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015

    [13]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485

    [14]

    Anderson P W 1972 Science 177 393

    [15]

    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61

    [16]

    Bernevig B A, Hughes T L 2013 Topological Insulators and Topological Superconductors (Princeton: Princeton University Press) pp72-77

    [17]

    Chang Z W, Hao W C, Liu X 2022 J. Phys.: Condens. Matter 34 485502

    [18]

    Wen X G 1989 Phys. Rev. B 40 7387

    [19]

    Sticlet D, Piéchon F 2013 Phys. Rev. B 87 115402

    [20]

    Yakovenko V M 1990 Phys. Rev. Lett. 65 251

    [21]

    Zhao Y F, Zhang R, Mei R, Zhou L J, Yi H, Zhang Y Q, Yu J, Xiao R, Wang K, Samarth N, Chan M H W, Liu C X, Chang C Z 2020 Nature 588 419

    [22]

    Liu C X, Zhang S C, Qi X L 2016 Annu. Rev. Condens. Matter 7 301

    [23]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900

    [24]

    Chang C Z, Liu C X, MacDonald A H 2023 Rev. Mod. Phys. 95 011002

    [25]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237

    [26]

    Sompet P, Hirthe S, Bourgund D, Chalopin T, Bibo J, Koepsell J, Bojović P, Verresen R, Pollmann F, Salomon G, Gross C, Hilker T A, Bloch I 2022 Nature 606 484

    [27]

    Xu J J, Gu Q, Mueller E J 2018 Phys. Rev. Lett. 120 085301

    [28]

    Simon J 2014 Nature 515 202

    [29]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [30]

    Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J, Hasan M Z 2008 Nature 452 970

    [31]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398

    [32]

    Li J, Chu R L, Jain J K, Shen S Q 2009 Phys. Rev. Lett. 102 136806

    [33]

    Yamakage A, Nomura K, Imura K I, Kuramoto Y 2011 J. Phys. Soc. Jpn. 80 053703

    [34]

    Guo H M, Rosenberg G, Refael G, Franz M 2010 Phys. Rev. Lett. 105 216601

    [35]

    Liu H, Xie B, Wang H, Liu W, Li Z, Cheng H, Tian J, Liu Z, Chen S 2023 Phys. Rev. B 108 L161410

    [36]

    Stützer S, Plotnik Y, Lumer Y, Titum P, Lindner N H, Segev M, Rechtsman M C, Szameit A 2018 Nature 560 461

    [37]

    Zhang Z Q, Wu B L, Song J, Jiang H 2019 Phys. Rev. B 100 184202

    [38]

    Chen R, Yi X X, Zhou B 2023 Phys. Rev. B 108 085306

    [39]

    Chen H, Liu Z R, Chen R, Zhou B 2023 Chin. Phys. B 33 017202

    [40]

    Groth C W, Wimmer M, Akhmerov A R, Tworzydło J, Beenakker C W J 2009 Phys. Rev. Lett. 103 196805

    [41]

    Orth C P, Sekera T, Bruder C, Schmidt T L 2016 Sci. Rep. 6 24007

    [42]

    Xing Y X, Lang Y L 2022 J. Shanxi. Univ.(Nat. Sci. Ed.) 3 672 (in Chinese)[邢燕霞, 梁钰林 2022山西大学学报(自然科学版) 3 672]

    [43]

    Wei M, Zhou M, Zhang Y T, Xing Y 2020 Phys. Rev. B 101 155408

    [44]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [45]

    Caroli C, Combescot R, Nozieres P, Saint James D 1971 J. Phys. C: Solid State Phys. 4 916

    [46]

    Xing Y X, Wang J, Sun Q F 2010 Phys. Rev. B 81 165425

    [47]

    Jiang H, Wang L, Sun Q f, Xie X C 2009 Phys. Rev. B 80 165316

    [48]

    Zhang Y Y, Hu J P, Bernevig B A, Wang X R, Xie X C, Liu W M 2008 Phys. Rev. B 78 155413

    [49]

    Jauho A e, Wingreen N S, Meir Y 1994 Phys. Rev. B 50 5528

    [50]

    Nikolić B K, Zârbo L P, Souma S 2006 Phys. Rev. B 73 075303

    [51]

    Cresti A, Grosso G, Parravicini G P 2004 Phys. Rev. B 69 233313

    [52]

    Ju X, Guo J H 2011 Acta Phys. Sin. 60 057302 (in Chinese)[琚鑫, 郭健宏 2011 物理学报 60 057302]

    [53]

    Datta S 1995 Electronic transport in mesoscopic systems (1st Ed.) (United Kingdom: Cambridge University Press) pp57-65

    [54]

    Xu Y, Xu X Y, Zhang W, Ouyang T, Tang C 2019 Acta Phys. Sin. 68 247202 (in Chinese)[许易, 许小言, 张薇, 欧阳滔, 唐超 2019 物理学报 68 247202]

    [55]

    Xing H Y, Zhang Z H, Wu W J, Guo Z Y, Ru J D 2023 Acta Phys. Sin. 72 038502 (in Chinese)[邢海英, 张子涵, 吴文静, 郭志英, 茹金豆 2023 物理学报 72 038502]

    [56]

    Yan J, Wei M M, Xing Y X 2019 Acta Phys. Sin. 68 227301 (in Chinese)[闫婕,魏苗苗,邢燕霞 2019 物理学报 68 227301]

    [57]

    MacKinnon A, Kramer B 1981 Phys. Rev. Lett. 47 1546

    [58]

    Anderson P W 1958 Phys. Rev. 109 1492

    [59]

    Chen C-Z, Liu H, Xie X C 2019 Phys. Rev. Lett. 122 026601

  • [1] Liu Jing-Hu, Xu Zhi-Hao. Random two-body dissipation induced non-Hermitian many-body localization. Acta Physica Sinica, doi: 10.7498/aps.73.20231987
    [2] Gao Jian-Hua, Sheng Xin-Li, Wang Qun, Zhuang Peng-Fei. Relativistic spin transport theory for spin-1/2 fermions. Acta Physica Sinica, doi: 10.7498/aps.72.20222470
    [3] Ding Jin-Ting, Hu Pei-Jia, Guo Ai-Min. Electron transport in graphene nanoribbons with line defects. Acta Physica Sinica, doi: 10.7498/aps.72.20230502
    [4] Liu Tian, Li Zong-Liang, Zhang Yan-Hui, Lan Kang. Study of quantum speed limit of of transport process of single quantum dot system in dissipative environment. Acta Physica Sinica, doi: 10.7498/aps.72.20222159
    [5] Liu Chang, Wang Ya-Yu. Quantum transport phenomena in magnetic topological insulators. Acta Physica Sinica, doi: 10.7498/aps.72.20230690
    [6] Fang Jing-Yun, Sun Qing-Feng. Thermal dissipation of electric transport in graphene p-n junctions in magnetic field. Acta Physica Sinica, doi: 10.7498/aps.71.20220029
    [7] Liu Jia-Lin, Pang Ting-Fang, Yang Xiao-Sen, Wang Zheng-Ling. Skin effect in disordered non-Hermitian Su-Schrieffer-Heeger. Acta Physica Sinica, doi: 10.7498/aps.71.20221151
    [8] Hu Hai-Tao, Guo Ai-Min. Quantum transport properties of bilayer borophene nanoribbons. Acta Physica Sinica, doi: 10.7498/aps.71.20221304
    [9] Fu Cong, Ye Meng-Hao, Zhao Hui, Chen Yu-Guang, Yan Yong-Hong. Effects of intrachain disorder on photoexcitation in conjugated polymer chains. Acta Physica Sinica, doi: 10.7498/aps.70.20201801
    [10] Zhang Wei-Xi, Li Yong, Tian Chang-Hai, She Yan-Chao. Room-temperature quantum anomalous Hall effect in monolayer BaPb with large magnetocrystalline anisotropy energies. Acta Physica Sinica, doi: 10.7498/aps.70.20210014
    [11] Wu Xin-Yu, Han Wei-Hua, Yang Fu-Hua. Quantum transport relating to impurity quantum dots in silicon nanostructure transistor. Acta Physica Sinica, doi: 10.7498/aps.68.20190095
    [12] Yan Jie, Wei Miao-Miao, Xing Yan-Xia. Dephasing effect of quantum spin topological states in HgTe/CdTe quantum well. Acta Physica Sinica, doi: 10.7498/aps.68.20191072
    [13] Chen Ze-Guo, Wu Ying. Multiple topological phases in phononic crystals. Acta Physica Sinica, doi: 10.7498/aps.66.227804
    [14] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, doi: 10.7498/aps.64.097202
    [15] Zhang Cai-Xia, Guo Hong, Yang Zhi, Luo You-Hua. The magnetic and quantum transport properties of sandwich-structured Tan(B3N3H6)n+1 clusters. Acta Physica Sinica, doi: 10.7498/aps.61.193601
    [16] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Disorder effect on the focus image of phononic crystal panel with negative refraction. Acta Physica Sinica, doi: 10.7498/aps.59.376
    [17] Fu Bang, Deng Wen-Ji. General solutions to spin transportation of electrons through equilateral polygon quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, doi: 10.7498/aps.59.2739
    [18] Li Peng, Deng Wen-Ji. Exact solutions to the transportation of electrons through equilateral polygonal quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, doi: 10.7498/aps.58.2713
    [19] Yin Yong-Qi, Li Hua, Ma Jia-Ning, He Ze-Long, Wang Xuan-Zhang. Quantum transport of multi-terminal coupled-quantum-dot-molecular bridge. Acta Physica Sinica, doi: 10.7498/aps.58.4162
    [20] Liu Xiao-Liang, Xu Hui, Ma Song-Shan, Song Zhao-Quan. The localized properties of electronic states in one-dimensional disordered binary solid. Acta Physica Sinica, doi: 10.7498/aps.55.2949
Metrics
  • Abstract views:  161
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Available Online:  27 December 2024

/

返回文章
返回