Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of hybrid superconducting devices and quantum transport based on one-dimensional electronic systems

DENG Xiaosong ZHANG Zhiyong KANG Ning

Citation:

Study of hybrid superconducting devices and quantum transport based on one-dimensional electronic systems

DENG Xiaosong, ZHANG Zhiyong, KANG Ning
PDF
Get Citation
  • The hybrid system of low-dimensional electronic and superconducting materials has been an attractive structure for studying mesoscopic transport and low-dimensional superconducting properties. Low-dimensional structures with strong spin-orbit coupling exhibit rich quantum phenomena combined with superconducting macroscopic quantum states, becoming an important platform for exploring novel physical properties and developing new topological quantum devices. The construction of hybrid superconducting devices based on high-quality one-dimensional electronic materials, and the exploration of quantum transport phenomena at the interface emerge as research frontier. It is crucial to understand the characteristic scattering mechanism and quantum transport process in these hybrid systems at the nanoscale. The study of the coupling mechanism between the charge state and the topological localized state, and the experimental probe of the intrinsic transport properties of the topological states are the key issues, which enable the development of the new principles and methods for novel superconducting nanoelectronic devices and topological quantum devices. Due to the competition of multiple energy scales and complicated bound states in these hybrid structures, the device physics and measurement schemes present unprecedented challenges. This paper reviews recent advances in hybrid superconducting devices based on one-dimensional electronic systems, focusing on the material systems based on semiconducting nanowires and carbon nanotubes. Semiconducting nanowires with strong spin-orbit coupling and large Landau g-factor are expected to support Majorana bound states and require further improvements in the material quality, interface between superconductors and nanowires, understanding of the transport mechanism, and detection scheme. The construction strategies of extending topological phase space, including broken symmetry, helical modes, semiconducting characteristics, and attenuation of the external magnetic field, are proposed and discussed in hybrid superconducting devices based on carbon nanotubes. We briefly introduce the main phenomena and experimental challenges, ranging from material and device physics. Finally, this paper summarizes and gives an outlook on the development and transport studies of topological quantum devices based on one-dimensional systems.
  • [1]

    Winkelmann C B, Roch N, Wernsdorfer W, Bouchiat V and Balestro F 2009 Nat. Phys. 5876

    [2]

    De Franceschi S, Kouwenhoven L, Schönenberger C and Wernsdorfer W 2010 Nat. Nanotechnol. 5703

    [3]

    Doh Y J, van Dam J A, Roest A L, Bakkers E P A M, Kouwenhoven L P and De Franceschi S 2005 Science 309272

    [4]

    Jarillo-Herrero P, van Dam J A and Kouwenhoven L P 2006 Nature 439953

    [5]

    Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K and Morpurgo A F 2007 Nature 44656

    [6]

    Qu F M, Yang F, Shen J, Ding Y, Chen J, Ji Z Q, Liu G T, Fan J, Jing X N, Yang C L and Lu L 2012 Sci. Rep. 2339

    [7]

    Veldhorst M, Snelder M, Hoek M, Gang T, Guduru V K, Wang X L, Zeitler U, van der Wiel W G, Golubov A A, Hilgenkamp H and Brinkman A 2012 Nat. Mater. 11417

    [8]

    Bockrath M, Cobden D H, Lu J, Rinzler A G, Smalley R E, Balents L and McEuen P L 1999 Nature 397598

    [9]

    Deshpande V V, Chandra B, Caldwell R, Novikov D S, Hone J and Bockrath M 2009 Science 323106

    [10]

    Deshpande V V and Bockrath M 2008 Nat. Phys. 4314

    [11]

    Li S, Kang N, Caroff P and Xu H Q 2017 Phys. Rev. B 95014515

    [12]

    Hensgens T, Fujita T, Janssen L, Li X, Van Diepen C J, Reichl C, Wegscheider W, Das Sarma S and Vandersypen L M K 2017 Nature 54870

    [13]

    Xiang J, Vidan A, Tinkham M, Westervelt R M and Lieber C M 2006 Nat. Nanotechnol. 1208

    [14]

    He J J, Tanaka Y and Nagaosa N 2023 Nat. Commun. 143330

    [15]

    Herrmann L G, Portier F, Roche P, Yeyati A L, Kontos T and Strunk C 2010 Phys. Rev. Lett. 104026801

    [16]

    Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 801083

    [17]

    Maeno Y, Ikeda A, and Mattoni G 2024 Nat. Phys. 201712

    [18]

    Dutta B, Umansky V, Banerjee M and Heiblum M 2022 Science 3771198

    [19]

    Fu L, and Kane C L 2008 Phys. Rev. Lett. 100096407

    [20]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 3361003

    [21]

    Yang F, Ding Y, Qu F M, Shen J, Chen J, Wei Z C, Ji Z Q, Liu G T, Fan J, Yang C L, Xiang T and Lu L 2012 Phys. Rev. B 85104508

    [22]

    Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Ding H and Gao H J 2018 Science 362333

    [23]

    Xu L, Li P L, LüZ Z, Shen J, Qu F M, Liu G T and Lü L 2023 Acta Phys. Sin. 72177401(in Chinese)[徐磊, 李沛岭, 吕昭征, 沈洁, 屈凡明, 刘广同, 吕力2023物理学报72177401]

    [24]

    Chu C G L, Wang A Q and Liao Z M 2023 Acta Phys. Sin. 72087401(in Chinese)[初纯光, 王安琦, 廖志敏2023物理学报72087401]

    [25]

    Qi J J, Chen C Z, Song J T, Liu J, He K, Sun Q F and Xie X C 2025 Sci. China Phys. Mech. Astron. 68227401

    [26]

    Lyu B S, Lou S, Shen P Y and Shi Z W 2024 PHYSICS 53683(in Chinese)[吕博赛, 娄硕, 沈沛约, 史志文2024物理53683]

    [27]

    Yazdani A, von Oppen F, Halperin B I and Yacoby A 2023 Science 3801235

    [28]

    Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105077001

    [29]

    Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105177002

    [30]

    Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M and Oreg Y 2018 Nat. Rev. Mater. 352

    [31]

    Dmytruk O and Klinovaja J 2018 Phys. Rev. B 97155409

    [32]

    Nichele F, Chesi S, Hennel S, Wittmann A, Gerl C, Wegscheider W, Loss D, Ihn T and Ensslin K 2014 Phys. Rev. Lett. 113046801

    [33]

    Miserev D S, Srinivasan A, Tkachenko O A, Tkachenko V A, Farrer I, Ritchie D A, Hamilton A R and Sushkov O P 2017 Phys. Rev. Lett. 119116803

    [34]

    Nilsson H A, Caroff P, Thelander C, Larsson M, Wagner J B, Wernersson L E, Samuelson L and Xu H Q 2009 Nano Lett. 93151

    [35]

    Fasth C, Fuhrer A, Samuelson L, Golovach V N and Loss D 2007 Phys. Rev. Lett. 98266801

    [36]

    Pribiag V S, Nadj-Perge S, Frolov S M, van den Berg J W G, van Weperen I, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2013 Nat. Nanotechnol. 8170

    [37]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8887

    [38]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 126414

    [39]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Science 346602

    [40]

    Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M and Ando Y 2011 Phys. Rev. Lett. 107217001

    [41]

    Fornieri A, Whiticar A M, Setiawan F, Marin E P, Drachmann A C C, Keselman A, Gronin S, Thomas C, Wang T, Kallaher R, Gardner G C, Berg E, Manfra M J, Stern A, Marcus C M and Nichele F 2019 Nature 56989

    [42]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C H, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116257003

    [43]

    Prada E, San-Jose P, de Moor M W A, Geresdi A, Lee E J H, Klinovaja J, Loss D, Nygård J, Aguado R and Kouwenhoven L P 2020 Nat. Rev. Phys. 2575

    [44]

    Li S, Kang N, Fan D X, Wang L B, Huang Y Q, Caroff P and Xu H Q 2016 Sci. Rep. 624822

    [45]

    Plissard S R, van Weperen I, Car D, Verheijen M A, Immink G W G, Kammhuber J, Cornelissen L J, Szombati D B, Geresdi A, Frolov S M, Kouwenhoven L P and Bakkers E P A M 2013 Nat. Nanotechnol. 8859

    [46]

    He J, Pan D, Yang G, Liu M, Ying J, Lyu Z, Fan J, Jing X, Liu G, Lu B, Liu D E, Zhao J, Lu L and Qu F 2020 Phys. Rev. B 102075121

    [47]

    Luthi F, Stavenga T, Enzing O W, Bruno A, Dickel C, Langford N K, Rol M A, Jespersen T S, Nygård J, Krogstrup P and DiCarlo L 2018 Phys. Rev. Lett. 120100502

    [48]

    Hays M, Fatemi V, Bouman D, Cerrillo J, Diamond S, Serniak K, Connolly T, Krogstrup P, Nygård J, Levy Yeyati A, Geresdi A and Devoret M H 2021 Science 373430

    [49]

    Thomas C, Hatke A T, Tuaz A, Kallaher R, Wu T, Wang T, Diaz R E, Gardner G C, Capano M A and Manfra M J 2018 Phys. Rev. Mater. 2104602

    [50]

    Lee J S, Shojaei B, Pendharkar M, Feldman M, Mukherjee K and Palmstrøm C J 2019 Phys. Rev. Mater. 3014603

    [51]

    Lei Z, Lehner C A, Cheah E, Karalic M, Mittag C, Alt L, Scharnetzky J, Wegscheider W, Ihn T and Ensslin K 2019 Appl. Phys. Lett. 115012101

    [52]

    Mittag C, Karalic M, Lei Z, Thomas C, Tuaz A, Hatke A T, Gardner G C, Manfra M J, Ihn T and Ensslin K 2019 Phys. Rev. B 100075422

    [53]

    Microsoft Quantum 2023 Phys. Rev. B 107245423

    [54]

    Krogstrup P, Ziino N L B, Chang W, Albrecht S M, Madsen M H, Johnson E, Nygård J, Marcus C M and Jespersen T S 2015 Nat. Mater. 14400

    [55]

    Vaitiek·enas S, Krogstrup P and Marcus C M 2020 Phys. Rev. B 101060507

    [56]

    Deng M T, Vaitiek·enas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P and Marcus C M 2016 Science 3541557

    [57]

    Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P and Marcus C M 2016 Nature 531206

    [58]

    Albrecht S M, Hansen E B, Higginbotham A P, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P, Danon J, Flensberg K and Marcus C M 2017 Phys. Rev. Lett. 118137701

    [59]

    Bordin A, Wang G, Liu C-X, ten Haaf S L D, van Loo N, Mazur G P, Xu D, van Driel D, Zatelli F, Gazibegovic S, Badawy G, Bakkers E P A M, Wimmer M, Kouwenhoven L P and Dvir T 2023 Phys. Rev. X 13031031

    [60]

    Mazur G P, van Loo N, van Driel D, Wang J Y, Badawy G, Gazibegovic S, Bakkers E P A M and Kouwenhoven L P 2022 arXiv: 2211. 14283[cond-mat.supr-con]

    [61]

    Pendharkar M, Zhang B, Wu H, Zarassi A, Zhang P, Dempsey C P, Lee J S, Harrington S D, Badawy G, Gazibegovic S, Op het Veld R L M, Rossi M, Jung J, Chen A-H, Verheijen M A, Hocevar M, Bakkers E P A M, Palmstrøm C J and Frolov S M 2021 Science 372508

    [62]

    Kanne T, Marnauza M, Olsteins D, Carrad D J, Sestoft J E, de Bruijckere J, Zeng L, Johnson E, Olsson E, Grove-Rasmussen K and Nygård J 2021 Nat. Nanotechnol. 16776

    [63]

    Vaitiek·enas S, Liu Y, Krogstrup P and Marcus C M 2021 Nat. Phys. 1743

    [64]

    Liu Y, Vaitiek·enas S, Martí-Sánchez S, Koch C, Hart S, Cui Z, Kanne T, Khan S A, Tanta R, Upadhyay S, Cachaza M E, Marcus C M, Arbiol J, Moler K A and Krogstrup P 2020 Nano Lett. 20456

    [65]

    Vaitiek·enas S, Winkler G W, van Heck B, Karzig T, Deng M T, Flensberg K, Glazman L I, Nayak C, Krogstrup P, Lutchyn R M and Marcus C M 2020 Science 3671442

    [66]

    Valentini M, Peñaranda F, Hofmann A, Brauns M, Hauschild R, Krogstrup P, San-Jose P, Prada E, Aguado R and Katsaros G 2021 Science 37382

    [67]

    Woods B D, Das Sarma S and Stanescu T D 2019 Phys. Rev. B 99161118

    [68]

    San-Jose P, PayáC, Marcus C M, Vaitiek·enas S and Prada E 2023 Phys. Rev. B 107155423

    [69]

    San-Jose P, Prada E and Aguado R 2012 Phys. Rev. Lett. 108257001

    [70]

    Legg H F, Laubscher K, Loss D and Klinovaja J 2023 Phys. Rev. B 108214520

    [71]

    Wimmer M, Akhmerov A R, Dahlhaus J P and Beenakker C W J 2011 New. J. Phys. 13053016

    [72]

    Danon J, Hellenes A B, Hansen E B, Casparis L, Higginbotham A P and Flensberg K 2020 Phys. Rev. Lett. 124036801

    [73]

    Pikulin D I, van Heck B, Karzig T, Martinez E A, Nijholt B, Laeven T, Winkler G W, Watson J D, Heedt S, Temurhan M, Svidenko V, Lutchyn R M, Thomas M, de Lange G, Casparis L and Nayak C 2021 arXiv: 2103. 12217. [cond-mat.mes-hall]

    [74]

    Hess R, Legg H F, Loss D and Klinovaja J 2023 Phys. Rev. Lett. 130207001

    [75]

    Rosdahl T Ö, Vuik A, Kjaergaard M and Akhmerov A R 2018 Phys. Rev. B 97045421

    [76]

    Banerjee A, Lesser O, Rahman M A, Thomas C, Wang T, Manfra M J, Berg E, Oreg Y, Stern A and Marcus C M 2023 Phys. Rev. Lett. 130096202

    [77]

    Pan H, Sau J D and Das Sarma S 2021 Phys. Rev. B 103014513

    [78]

    Tsintzis A, Souto R S, Flensberg K, Danon J and Leijnse M 2024 PRX Quantum 5010323

    [79]

    Leijnse M and Flensberg K 2012 Phys. Rev. B 86134528

    [80]

    Dvir T, Wang G, van Loo N, Liu C X, Mazur G P, Bordin A, ten Haaf S L D, Wang J Y, van Driel D, Zatelli F, Li X, Malinowski F K, Gazibegovic S, Badawy G, Bakkers E P A M, Wimmer M and Kouwenhoven L P 2023 Nature 614445

    [81]

    Bordin A, Li X, van Driel D, Wolff J C, Wang Q, ten Haaf S L D, Wang G, van Loo N, Kouwenhoven L P and Dvir T 2024 Phys. Rev. Lett. 132056602

    [82]

    Laird E A, Kuemmeth F, Steele G A, Grove-Rasmussen K, Nygård J, Flensberg K and Kouwenhoven L P 2015 Rev. Mod. Phys. 87703

    [83]

    Minot E D, Yaish Y, Sazonova V, Park J Y, Brink M and McEuen P L 2003 Phys. Rev. Lett. 90156401

    [84]

    Minot E D, Yaish Y, Sazonova V and McEuen P L 2004 Nature 428536

    [85]

    Jhang S H, Marganska M, Skourski Y, Preusche D, Grifoni M, Wosnitza J and Strunk C 2011 Phys. Rev. Lett. 106096802

    [86]

    Deshpande V V, Chandra B, Caldwell R, Novikov D S, Hone J and Bockrath M 2009 Science 323106

    [87]

    Deng X, Gong K, Wang Y, Liu Z, Jiang K, Kang N and Zhang Z 2023 Phys. Rev. Lett. 130207002

    [88]

    Jin Z, Chu H B, Wang J Y, Hong J X, Tan W C and Li Y 2007 Nano Lett. 72073

    [89]

    Wang X S, Li Q Q, Xie J, Jin Z, Wang J Y, Li Y, Jiang K L and Fan S S 2009 Nano Lett. 93137

    [90]

    Kong J, Yenilmez E, Tombler T W, Kim W, Dai H J, Laughlin R B, Liu L, Jayanthi C S and Wu S Y 2001 Phys. Rev. Lett. 87106801

    [91]

    Liang W J, Bockrath M, Bozovic D, Hafner J H, Tinkham M and Park H 2001 Nature 411665

    [92]

    Javey A, Guo J, Wang Q, Lundstrom M and Dai H J 2003 Nature 424654

    [93]

    Zhang Z Y, Liang X L, Wang S, Yao K, Hu Y F, Zhu Y Z, Chen Q, Zhou W W, Li Y, Yao Y G, Zhang J and Peng L M 2007 Nano Lett. 73603

    [94]

    Urgell C, Yang W, De Bonis S L, Samanta C, Esplandiu M J, Dong Q, Jin Y and Bachtold A 2020 Nat. Phys. 1632

    [95]

    Wen Y, Ares N, Schupp F J, Pei T, Briggs G A D and Laird E A 2020 Nat. Phys. 1675

    [96]

    Wang S, Zhao S H, Shi Z W, Wu F Q, Zhao Z Y, Jiang L L, Watanabe K, Taniguchi T, Zettl A, Zhou C W and Wang F 2020 Nat. Mater. 19986

    [97]

    Wu C C, Liu C H and Zhong Z H 2010 Nano Lett. 101032

    [98]

    Pei F, Laird E A, Steele G A and Kouwenhoven L P 2012 Nat. Nanotechnol. 7630

    [99]

    Zhang R F, Ning Z Y, Zhang Y Y, Xie H H, Zhang Q, Qian W Z, Chen Q and Wei F 2013 Nanoscale 56584

    [100]

    Zhang R F, Ning Z Y, Zhang Y Y, Zheng Q S, Chen Q, Xie H H, Zhang Q, Qian W Z and Wei F 2013 Nat. Nanotechnol. 8912

    [101]

    Zhang R F, Zhang Y Y, Zhang Q, Xie H H, Wang H D, Nie J Q, Wen Q and Wei F 2013 Nat. Commun. 41727

    [102]

    Shen B Y, Zhu Z X, Zhang J Y, Xie H H, Bai Y X and Wei F 2018 Adv. Mater. 301705844

    [103]

    Kasumov A Y, Deblock R, Kociak M, Reulet B, Bouchiat H, Khodos I I, Gorbatov Y B, Volkov V T, Journet C and Burghard M 1999 Science 2841508

    [104]

    Mergenthaler M, Schupp F J, Nersisyan A, Ares N, Baumgartner A, Schönenberger C, Briggs G A D, Leek P J and Laird E A 2021 Mater. Quantum. Technol. 1035003

    [105]

    Bauml C, Bauriedl L, Marganska M, Grifoni M, Strunk C and Paradiso N 2021 Nano Lett. 218627

    [106]

    Sau J D and Tewari S 2013 Phys. Rev. B 88054503

    [107]

    Huertas-Hernando D, Guinea F and Brataas A 2006 Phys. Rev. B 74155426

    [108]

    Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74165310

    [109]

    Kuemmeth F, Ilani S, Ralph D C and McEuen P L 2008 Nature 452448

    [110]

    Marganska M, Milz L, Izumida W, Strunk C and Grifoni M 2018 Phys. Rev. B 97075141

    [111]

    Milz L, Izumida W, Grifoni M and Marganska M 2019 Phys. Rev. B 100155417

    [112]

    Zhou B T, Yuan N F Q, Jiang H L and Law K T 2016 Phys. Rev. B 93180501

    [113]

    Xi X X, Wang Z F, Zhao W W, Park J H, Law K T, Berger H, Forro L, Shan J and Mak K F 2016 Nat. Phys. 12139

    [114]

    Saito Y, Nakamura Y, Bahramy M S, Kohama Y, Ye J T, Kasahara Y, Nakagawa Y, Onga M, Tokunaga M, Nojima T, Yanase Y and Iwasa Y 2016 Nat. Phys. 12144

    [115]

    Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T and Ye J T 2015 Science 3501353

    [116]

    Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R and Iwasa Y 2012 Science 3381193

    [117]

    de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X D, Xiao D and Hunt B M 2018 Nat. Commun. 91427

    [118]

    Fatemi V, Wu S F, Cao Y, Bretheau L, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 362926

    [119]

    Lesser O, Shavit G and Oreg Y 2020 Phys. Rev. Res. 2023254

    [120]

    Han T Y, Shen J Y, Yuan N F Q, Lin J X Z, Wu Z F, Wu Y Y, Xu S G, An L H, Long G, Wang Y W, Lortz R and Wang N 2018 Phys. Rev. B 97060505

    [121]

    Kim M, Park G H, Lee J, Lee J H, Park J, Lee H, Lee G H and Lee H J 2017 Nano Lett. 176125

    [122]

    Klinovaja J, Gangadharaiah S and Loss D 2012 Phys. Rev. Lett. 108196804

    [123]

    Klinovaja J, Schmidt M J, Braunecker B and Loss D 2011 Phys. Rev. Lett. 106156809

    [124]

    Klinovaja J, Schmidt M J, Braunecker B and Loss D 2011 Phys. Rev. B 84085452

    [125]

    Egger R and Flensberg K 2012 Phys. Rev. B 85235462

    [126]

    Murra P, Inotani D, and Nitta M 2022 Phys. Rev. B 105214525

    [127]

    Desjardins M M, Contamin L C, Delbecq M R, Dartiailh M C, Bruhat L E, Cubaynes T, Viennot J J, Mallet F, Rohart S, Thiaville A, Cottet A and Kontos T 2019 Nat. Mater. 181060

    [128]

    Klinovaja J, Stano P and Loss D 2012 Phys. Rev. Lett. 109236801

    [129]

    Klinovaja J, Stano P, Yazdani A and Loss D 2013 Phys. Rev. Lett. 111186805

    [130]

    Kjaergaard M, Wolms K and Flensberg K 2012 Phys. Rev. B 85020503

    [131]

    Klinovaja J and Loss D 2013 Phys. Rev. X 3011008

    [132]

    Cottet A, Kontos T and Doucot B 2013 Phys. Rev. B 88195415

    [133]

    van Woerkom D J, Proutski A, van Heck B, Bouman D, Vayrynen J I, Glazman L I, Krogstrup P, Nygard J, Kouwenhoven L P and Geresdi A 2017 Nat. Phys. 13876

    [134]

    Vayrynen J I, Rastelli G, Belzig W and Glazman L I 2015 Phys. Rev. B 92134508

    [135]

    Dartiailh M C, Kontos T, Doucot B and Cottet A 2017 Phys. Rev. Lett. 118126803

    [136]

    Mergenthaler M, Nersisyan A, Patterson A, Esposito M, Baumgartner A, Schönenberger C, Briggs G A D, Laird E A and Leek P J 2021 Phys. Rev. Appl. 15064050

    [137]

    Fatin G L, Matos-Abiague A, Scharf B and Zutic I 2016 Phys. Rev. Lett. 117077002

    [138]

    Liu L J, Han J, Xu L, Zhou J S, Zhao C Y, Ding S J, Shi H W, Xiao M M, Ding L, Ma Z, Jin C H, Zhang Z Y and Peng L M 2020 Science 368850

    [139]

    Mukhopadhyay R, Kane C L and Lubensky T C 2001 Phys. Rev. B 64045120

  • [1] WANG Yu, LIANG Yulin, XING Yanxia. Topological Anderson insulator phase in graphene. Acta Physica Sinica, doi: 10.7498/aps.74.20241031
    [2] Jiang Long-Xing, Li Qing-Chao, Zhang Xu, Li Jing-Feng, Zhang Jing, Chen Zu-Xin, Zeng Min, Wu Hao. Spintronic devices based on topological and two-dimensional materials. Acta Physica Sinica, doi: 10.7498/aps.73.20231166
    [3] Gao Jian-Hua, Sheng Xin-Li, Wang Qun, Zhuang Peng-Fei. Relativistic spin transport theory for spin-1/2 fermions. Acta Physica Sinica, doi: 10.7498/aps.72.20222470
    [4] Ding Jin-Ting, Hu Pei-Jia, Guo Ai-Min. Electron transport in graphene nanoribbons with line defects. Acta Physica Sinica, doi: 10.7498/aps.72.20230502
    [5] Liu Tian, Li Zong-Liang, Zhang Yan-Hui, Lan Kang. Study of quantum speed limit of of transport process of single quantum dot system in dissipative environment. Acta Physica Sinica, doi: 10.7498/aps.72.20222159
    [6] Jiang Da, Yu Dong-Yang, Zheng Zhan, Cao Xiao-Chao, Lin Qiang, Liu Wu-Ming. Research progress of material, physics, and device of topological superconductors for quantum computing. Acta Physica Sinica, doi: 10.7498/aps.71.20220596
    [7] Fang Jing-Yun, Sun Qing-Feng. Thermal dissipation of electric transport in graphene p-n junctions in magnetic field. Acta Physica Sinica, doi: 10.7498/aps.71.20220029
    [8] Hu Hai-Tao, Guo Ai-Min. Quantum transport properties of bilayer borophene nanoribbons. Acta Physica Sinica, doi: 10.7498/aps.71.20221304
    [9] Preparation of niobium based superconducting qubits and auxiliary devices. Acta Physica Sinica, doi: 10.7498/aps.70.20211865
    [10] Zheng Dong-Ning. Superconducting quantum interference devices. Acta Physica Sinica, doi: 10.7498/aps.70.20202131
    [11] Wu Xin-Yu, Han Wei-Hua, Yang Fu-Hua. Quantum transport relating to impurity quantum dots in silicon nanostructure transistor. Acta Physica Sinica, doi: 10.7498/aps.68.20190095
    [12] Yan Jie, Wei Miao-Miao, Xing Yan-Xia. Dephasing effect of quantum spin topological states in HgTe/CdTe quantum well. Acta Physica Sinica, doi: 10.7498/aps.68.20191072
    [13] Yan Rui, Wu Ze-Wen, Xie Wen-Ze, Li Dan, Wang Yin. First-principles study on transport property of molecular} device with non-collinear electrodes. Acta Physica Sinica, doi: 10.7498/aps.67.20172221
    [14] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, doi: 10.7498/aps.64.097202
    [15] Zhang Cai-Xia, Guo Hong, Yang Zhi, Luo You-Hua. The magnetic and quantum transport properties of sandwich-structured Tan(B3N3H6)n+1 clusters. Acta Physica Sinica, doi: 10.7498/aps.61.193601
    [16] Sun Wei-Feng. First-principles study of (InAs)1/(GaSb)1 superlattice atomic chains. Acta Physica Sinica, doi: 10.7498/aps.61.117104
    [17] Fu Bang, Deng Wen-Ji. General solutions to spin transportation of electrons through equilateral polygon quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, doi: 10.7498/aps.59.2739
    [18] Li Peng, Deng Wen-Ji. Exact solutions to the transportation of electrons through equilateral polygonal quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, doi: 10.7498/aps.58.2713
    [19] Yin Yong-Qi, Li Hua, Ma Jia-Ning, He Ze-Long, Wang Xuan-Zhang. Quantum transport of multi-terminal coupled-quantum-dot-molecular bridge. Acta Physica Sinica, doi: 10.7498/aps.58.4162
    [20] Li Hong, Guo Hua-Zhong, Lu Chuan, Li Ling, Gao Jie. Electronic properties of quantum wires in surface-acoustic-wave based single-electron transport devices. Acta Physica Sinica, doi: 10.7498/aps.57.5863
Metrics
  • Abstract views:  492
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  24 January 2025

/

返回文章
返回