-
Nonequilibrium heat transport and quantum thermodynamics in quantum light-matter interacting systems have recently attracted increasing attention. Consequently, quantum thermal devices, e.g., heat valve and head diode have been realized. Here, we investigate quantum heat flow in the nonequilibrium anisotropic Dicke model, where an ensemble of qubits collectively interacts with a photon field with anisotropic forms, each component individually interacting with bosonic thermal reservoirs. The quantum dressed master equation (DME) is included to properly study dissipative dynamics of the anisotropic Dicke model, which is able to handle strong qubit-photon coupling within the eigenbasis of the reduced anisotropic Dicke system. Our results demonstrate that anisotropic qubit-photon interactions are crucial for modulating steady-state heat flow, particularly at moderate and strong couplings. We also find that the analytical expressions of heat flows in the thermodynamic limit with limiting anisotropic factors can be used as the upper boundaries for the heat flows in the anisotropic Dicke model with finite qubit numbers. These heat flows exhibit cotunneling microscopic transport processes. Moreover, the large anisotropic factor and nonweak qubit-photon coupling are helpful in achieving the giant thermal rectification effect. We hope these results may deepen the understanding of nonequilibrium heat transport in the anisotropic quantum light-matter interacting systems.
-
[1] Cohen-Tannoudji C, Dupont-Roc J, Grynberg G 1998 Atom-Photon Interactions: Basic Processes and Applications (Wiley-VCH, New Jersey)
[2] Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge University Press, Cambridge)
[3] Haroche S, Brune M, Raimond J M 2020 Nat. Phys. 16 243
[4] Kurizki G, Bertet P, Kubo Y, Molmer K, Petrosyan D, Rabl P, Schmiedmayer J 2015 PNAS 112 3866
[5] Gonzalez-Tudela A, Reiserer A, Garcia-Ripoll J J, Garcia-Vidal F J 2024 Nat. Rev. Phys. 6 166
[6] Ronzani A, Karimi B, Senior J, Chang Y C, Peltonen J T, Chen C D, Pekola J P 2018 Nat. Phys. 14 991
[7] Pekola J P, Karimi B 2021 Rev. Mod. Phys. 93 041001
[8] Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89
[9] Greentree A D, Koch J, Larson J 2013 J. Phys. B 46 220201
[10] Blais A, Girvin S M, Oliver W D 2020 Nat. Phys. 16 247
[11] Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93 025005
[12] Petersson K D, McFaul L W, Schroer M D, Jung M, Taylor J M, Houck A A, Petta J R 2012 Nature 490 380
[13] Lin T, Li H O, Cao G, Guo G P 2023 Chin. Phys. B 32 070307
[14] Jaako T, Garcia-Ripoll J J, Rabl P 2020 Adv. Quantum Technol. 3 1900125
[15] Cai M L, Liu Z D, Zhao W D, Wu Y K, Mei Q X, Jiang Y, He L, Zhang X, Zhou Z C, Duan L M 2021 Nat. Commun. 12 1126
[16] Rabi I I 1936 Phys. Rev. 49 324
[17] Rabi I I 1937 Phys. Rev. 51 652
[18] Braak D 2011 Phys. Rev. Lett. 107 100401
[19] Braak D, Chen Q H, Batchelor M T, Solano E 2016 J. Phys. B 49 300301
[20] Xie Q T, Cui S, Cao J P, Amico L, Fan H 2014 Phys. Rev. X 4 021046
[21] Lyu G T, Kottmann K, Plenio M B, Myung-Joong H 2024 Phys. Rev. Research 6 033075
[22] Lu J H, Ning W, Zhu X, Wu F, Shen L T, Yang Z B, Zheng S B 2022 Phys. Rev. A 106 062616
[23] Zhu X, Lu J H, Ning W, Wu F, Shen L T, Yang Z B, Zheng S B 2023 Science China Physics, Mechanics, and Astronomy 66 250313
[24] Chen Z H, Che H X, Chen Z K, Wang C, Ren J 2022 Phys. Rev. Research 4 013152
[25] Ye T, Wang C, Chen Q H 2023 Physica A 609 128364
[26] Ye T, Wang C, Chen Q H 2024 Optics Express 32 33483
[27] Zhang Y Y, Chen X Y 2017 Phys. Rev. A 96 063821
[28] Dicke R H, 1954 Phys. Rev. 93 99
[29] Kirton P, Roses M M, Keeling J, Dalla Torre E G 2018 Adv. Quantum Technol. 2 1800043
[30] Emary C, Brandes T 2003 Phys. Rev. Lett. 90 044101
[31] Lambert N, Emary C, Brandes T 2004 Phys. Rev. Lett. 92 073602
[32] Gyhm Ju-Yeon, Safranek D, Rosa D 2022 Phys. Rev. Lett. 128 140501
[33] Dou F Q, Lu Y Q, Wang Y J, Sun J A 2022 Phys. Rev. A 106 032212
[34] Huang B Y, He Z, Chen Y 2023 Acta Phys. Sin. 72 180301
[35] Seidov S S, Mukhin S I 2024 Phys. Rev. A 109 022210
[36] Weiss U 2021 Quantum Dissipative Systems (World Scientific, Singapore)
[37] Chiacchio1 E I R, Nunnenkamp A, Brunelli M 2023 Phys. Rev. Lett. 131 113602
[38] Mivehvar F 2024 Phys. Rev. Lett. 132 073602
[39] Vivek G, Mondal D, Chakraborty S, Sinha S 2025 Phys. Rev. Lett. 134 113404
[40] Gong Z P, Hamazaki R, Ueda M 2018 Phys. Rev. Lett. 120 040404
[41] Jager S B, Giesen J M, Schneider I, Eggert S 2024 Phys. Rev. A 110 L010202
[42] Kirton P, Keeling J 2018 New J. Phys. 20 015009
[43] Strashko A, Kirton P, Keeling J 2018 Phys. Rev. Lett. 121 193601
[44] Das P, Bhakuni D S, Sharma A 2023 Phys. Rev. A 107 043706
[45] Chen X Y, Zhang Y Y, Chen Q H, Lin H Q 2024 Phys. Rev. A 110 063722
[46] Buijsman1 W, Gritsev V, Sprik R 2017 Phys. Rev. Lett. 118 080601
[47] Zhu X, Lu J H, Ning W, Shen L T, Wu F, Yang Z B 2024 Phys. Rev. A 109 052621
[48] Senior J, Gubaydullin A, Karimi B, Peltonen J T, Ankerhold J, Pekola J P 2020 Communications Physics 3 40
[49] Gubaydullin A, Thomas G, Golubev D S, Lvov D, Peltonen J T, Pekola J P 2022 Nat. Commun. 13 1552
[50] Liu Y Q, Yang Y J, Yu C S, 2023 Phys. Rev. E 107 044121
[51] Zhao X D, Xing Y, Cao J, Liu S T, Cui W X, Wang H F, 2023 npj Quantum Information 9 59
[52] Lu J C, Wang R Q, Ren J, Kulkarni M, Jiang J H 2019 Phys. Rev. B 99 035129
[53] Majland M, Christensen K S, Zinner N T 2020 Phys. Rev. B 101 184510
[54] Wang C, Chen H, Liao J Q 2021 Phys. Rev. A 104 033701
[55] Andolina G M, Erdman P A, Noe F, Pekola J, Schiro M 2024 Phys. Rev. Research 6 043128
[56] Beaudoin F, Gambetta J M, Blais A 2011 Phys. Rev. A 84 043832
[57] Altintas F, Eryigit R 2013 Phys. Rev. A 87 022124
[58] Le Boite A 2020 Adv. Quantum Technol. 3 1900140
[59] Emary C, Brandes T 2003 Phys. Rev. E 67 066203
[60] Li N B, Ren J, Wang L, Zhang G, Hanggi P, Li B 2012 Rev. Mod. Phys. 84 1045
[61] Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301
[62] Zhang L F, Yan Y H, Wu C Q, Wang J S, Li B W 2009 Phys. Rev. B 80 172301
Metrics
- Abstract views: 136
- PDF Downloads: 4
- Cited By: 0