-
Global polarization effect is an important physical phenomenon reflecting spin-orbit couplings in heavy ion collisions. Since STAR’s observation of the global polarization of
$\Lambda$ hyperons in Au+Au collisions in 2017, this effect has attracted a lot of interests in the field. In the hot and dense matter produced in heavy ion collisions, the spin-orbit couplings come from non-local collisions between particles, in which the orbital angular momentum involves the space and momentum information of the colliding particles, so it is necessary to describe the particle collisions with spin-orbit couplings in phase space. In addition, the spin-orbit coupling is a quantum effect, which requires quantum theory. In combination of two aspects, the quantum kinetic theory based on covariant Wigner functions has become a powerful tool to describe the global polarization effect. In this paper, we introduce the quantum kinetic theory for spin-1/2 Fermion system based on Wigner functions as well as the spin transport theory developed on this basis. The recent research progress of spin transport theory provides a solid theoretical foundation for simulating the space-time evolution of spin polarization effects in heavy ion collisions.-
Keywords:
- Wigner function /
- quantum kinetic theory /
- spin transport theory
[1] Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 (Erratum: Phys. Rev. Lett. 96 039901)
[2] Adamczyk L, et al. [STAR Collaboration]. 2017 Nature 548 62
[3] Gao J H, Chen S W, Deng W T, Liang Z T, Wang Q, Wang X N 2008 Phys. Rev. C 77 044902Google Scholar
[4] Huang X G, Huovinen P, Wang X N 2011 Phys. Rev. C 84 054910Google Scholar
[5] Zhang J J, Fang R H, Wang Q, Wang X N 2019 Phys. Rev. C 100 064904Google Scholar
[6] Liang Z T, Song J, Upsal I, Wang Q, Xu Z B 2021 Chin. Phys. C 45 014102Google Scholar
[7] Becattini F, Piccinini F, Rizzo J 2008 Phys. Rev. C 77 024906Google Scholar
[8] Becattini F, Chandra V, Del Zanna L, Grossi E 2013 Annals Phys. 338 32Google Scholar
[9] Becattini F, Florkowski W, Speranza E 2019 Phys. Lett. B 789 419Google Scholar
[10] Becattini F, Buzzegoli M, Grossi E 2019 Particles 2 197Google Scholar
[11] Fang R H, Pang L G, Wang Q, Wang X N 2016 Phys. Rev. C 94 024904Google Scholar
[12] Gao J H, Liang Z T 2019 Phys. Rev. D 100 056021Google Scholar
[13] Weickgenannt N, Sheng X L, Speranza E, Wang Q, Rischke D H 2019 Phys. Rev. D 100 056018Google Scholar
[14] Wang Z, Guo X, Shi S, Zhuang P 2019 Phys. Rev. D 100 014015
[15] Hattori K, Hidaka Y, Yang D L 2019 Phys. Rev. D 100 096011Google Scholar
[16] Liu Y C, Mameda K, Huang X G 2020 Chin. Phys. C 44 094101 [Erratum: 2021 Chin. Phys. C 45 089001]
[17] Sheng X L, Wang Q, Huang X G 2020 Phys. Rev. D 102 025019
[18] Yang D L, Hattori K, Hidaka Y 2020 JHEP 07 070
[19] Weickgenannt N, Speranza E, Sheng X L, Wang Q, Rischke D H 2021 Phys. Rev. Lett. 127 052301Google Scholar
[20] Weickgenannt N, Speranza E, Sheng X L, Wang Q, Rischke D H 2021 Phys. Rev. D 104 016022Google Scholar
[21] Sheng X L, Weickgenannt N, Speranza E, Rischke D H, Wang Q 2021 Phys. Rev. D 104 016029Google Scholar
[22] Florkowski W, Friman B, Jaiswal A, Speranza E 2018 Phys. Rev. C 97 041901Google Scholar
[23] Florkowski W, Friman B, Jaiswal A, Ryblewski R, Speranza E 2018 Phys. Rev. D 97 116017Google Scholar
[24] Hattori K, Hongo M, Huang X G, Matsuo M, Taya H 2019 Phys. Lett. B 795 100Google Scholar
[25] Hongo M, Huang X G, Kaminski M, Stephanov M, Yee H Y 2021 JHEP 11 150
[26] Weickgenannt N, Wagner D, Speranza E, Rischke D H 2022 Phys. Rev. D 106 096014Google Scholar
[27] Huang X G, Liao J, Wang Q, Xia X L 2021 Lect. Notes Phys. 987 281
[28] Gao J H, Liang Z T, Wang Q, Wang X N 2021 Lect. Notes Phys. 987 195
[29] Liu Y C, Huang X G 2020 Nucl. Sci. Tech. 31 56Google Scholar
[30] Jiang Y, Guo X, Zhuang P 2021 Lect. Notes Phys. 987 167
[31] Gao J H, Liang Z T, Wang Q 2021 Int. J. Mod. Phys. A 36 2130001Google Scholar
[32] Hidaka Y, Pu P, Wang Q, Yang D L 2022 Prog. Part. Nucl. Phys. 127 103989Google Scholar
[33] Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90Google Scholar
[34] Stephanov M A, Yin Y 2012 Phys. Rev. Lett. 109 162001Google Scholar
[35] Son D T, Yamamoto N 2013 Phys. Rev. D 87 085016Google Scholar
[36] Chen J W, Pu S, Wang Q, Wang X N 2013 Phys. Rev. Lett. 110 262301Google Scholar
[37] Manuel C, Torres-Rincon J M 2014 Phys. Rev. D 89 096002Google Scholar
[38] Manuel C, Torres-Rincon J M 2014 Phys. Rev. D 90 076007Google Scholar
[39] Chen J Y, Son D T, Stephanov M A, Yee H U, Yin Y 2014 Phys. Rev. Lett. 113 182302Google Scholar
[40] Chen J Y, Son D T, Stephanov M A 2015 Phys. Rev. Lett. 115 021601Google Scholar
[41] Hidaka Y, Pu S, Yang D L 2017 Phys. Rev. D 95 091901Google Scholar
[42] Mueller N, Venugopalan R 2018 Phys. Rev. D 97 051901Google Scholar
[43] Huang A, Shi S, Jiang Y, Liao J, Zhuang P 2018 Phys. Rev. D 98 036010Google Scholar
[44] Gao J H, Liang Z T, Wang Q, Wang X N 2018 Phys. Rev. D 98 036019Google Scholar
[45] Liu Y C, Gao L L, Mameda K, Huang X G 2019 Phys. Rev. D 99 085014Google Scholar
[46] Sun Y, Ko C M, Li F 2016 Phys. Rev. C 94 045204
[47] Sun Y, Ko C M 2017 Phys. Rev. C 95 034909Google Scholar
[48] Sun Y, Ko C M 2017 Phys. Rev. C 96 024906Google Scholar
[49] Sun Y, Ko C M 2018 Phys. Rev. C 98 014911
[50] Sun Y, Ko C M 2019 Phys. Rev. C 99 011903Google Scholar
[51] Zhou W H, Xu J 2018 Phys. Rev. C 98 044904Google Scholar
[52] Zhou W H, Xu J 2019 Phys. Lett. B 798 134932Google Scholar
[53] Liu S Y F, Sun Y, Ko C M 2020 Phys. Rev. Lett. 125 062301Google Scholar
[54] Wigner E P 1932 Phys. Rev. 40 749Google Scholar
[55] Heinz U W 1983 Phys. Rev. Lett. 51 351Google Scholar
[56] Elze H T, Gyulassy M, Vasak D 1986 Nucl. Phys. B 276 706Google Scholar
[57] Elze H T, Gyulassy M, Vasak D 1987 Annals Phys. 173 462Google Scholar
[58] Bialynicki-Birula I, Davis E D, Rafelski J 1993 Phys. Lett. B 311 329Google Scholar
[59] Zhuang P F, Heinz U W 1998 Phys. Rev. D 57 6525Google Scholar
[60] Guo X 2020 Chin. Phys. C 44 104106Google Scholar
[61] Ma S X, Gao J H 2022 arXiv: 2209.10737[hep-ph]
[62] Zhang J J, Fang R H, Wang Q, Wang X N 2019 Phys. Rev. C 100 064904
[63] Martin P C, Schwinger J S 1959 Phys. Rev. 115 1342Google Scholar
[64] Keldysh L V 1964 Zh. Eksp. Thero. Fiz. 47 1515
[65] Fang S, Pu S, Yang D L 2022 Phys. Rev. D 106 016002Google Scholar
[66] Wang Z, Guo X, Zhuang P 2021 Eur. Phys. J. C 81 799Google Scholar
[67] Sheng X L, Wang Q, Rischke D H 2022 Phys. Rev. D 106 L111901Google Scholar
[68] Wang Z, Zhuang P 2021 arXiv: 2105.00915
[69] Gao J H, Qi B, Wang S Y 2014 Phys. Rev. D 90 083001Google Scholar
[70] Wu H Z, Pang L G, Huang X G, Wang Q 2019 Phys. Rev. Rese. 1 033058
[71] Lin S 2022 Phys. Rev. D 105 076017Google Scholar
[72] Yang D L 2022 JHEP 06 140
-
[1] Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 (Erratum: Phys. Rev. Lett. 96 039901)
[2] Adamczyk L, et al. [STAR Collaboration]. 2017 Nature 548 62
[3] Gao J H, Chen S W, Deng W T, Liang Z T, Wang Q, Wang X N 2008 Phys. Rev. C 77 044902Google Scholar
[4] Huang X G, Huovinen P, Wang X N 2011 Phys. Rev. C 84 054910Google Scholar
[5] Zhang J J, Fang R H, Wang Q, Wang X N 2019 Phys. Rev. C 100 064904Google Scholar
[6] Liang Z T, Song J, Upsal I, Wang Q, Xu Z B 2021 Chin. Phys. C 45 014102Google Scholar
[7] Becattini F, Piccinini F, Rizzo J 2008 Phys. Rev. C 77 024906Google Scholar
[8] Becattini F, Chandra V, Del Zanna L, Grossi E 2013 Annals Phys. 338 32Google Scholar
[9] Becattini F, Florkowski W, Speranza E 2019 Phys. Lett. B 789 419Google Scholar
[10] Becattini F, Buzzegoli M, Grossi E 2019 Particles 2 197Google Scholar
[11] Fang R H, Pang L G, Wang Q, Wang X N 2016 Phys. Rev. C 94 024904Google Scholar
[12] Gao J H, Liang Z T 2019 Phys. Rev. D 100 056021Google Scholar
[13] Weickgenannt N, Sheng X L, Speranza E, Wang Q, Rischke D H 2019 Phys. Rev. D 100 056018Google Scholar
[14] Wang Z, Guo X, Shi S, Zhuang P 2019 Phys. Rev. D 100 014015
[15] Hattori K, Hidaka Y, Yang D L 2019 Phys. Rev. D 100 096011Google Scholar
[16] Liu Y C, Mameda K, Huang X G 2020 Chin. Phys. C 44 094101 [Erratum: 2021 Chin. Phys. C 45 089001]
[17] Sheng X L, Wang Q, Huang X G 2020 Phys. Rev. D 102 025019
[18] Yang D L, Hattori K, Hidaka Y 2020 JHEP 07 070
[19] Weickgenannt N, Speranza E, Sheng X L, Wang Q, Rischke D H 2021 Phys. Rev. Lett. 127 052301Google Scholar
[20] Weickgenannt N, Speranza E, Sheng X L, Wang Q, Rischke D H 2021 Phys. Rev. D 104 016022Google Scholar
[21] Sheng X L, Weickgenannt N, Speranza E, Rischke D H, Wang Q 2021 Phys. Rev. D 104 016029Google Scholar
[22] Florkowski W, Friman B, Jaiswal A, Speranza E 2018 Phys. Rev. C 97 041901Google Scholar
[23] Florkowski W, Friman B, Jaiswal A, Ryblewski R, Speranza E 2018 Phys. Rev. D 97 116017Google Scholar
[24] Hattori K, Hongo M, Huang X G, Matsuo M, Taya H 2019 Phys. Lett. B 795 100Google Scholar
[25] Hongo M, Huang X G, Kaminski M, Stephanov M, Yee H Y 2021 JHEP 11 150
[26] Weickgenannt N, Wagner D, Speranza E, Rischke D H 2022 Phys. Rev. D 106 096014Google Scholar
[27] Huang X G, Liao J, Wang Q, Xia X L 2021 Lect. Notes Phys. 987 281
[28] Gao J H, Liang Z T, Wang Q, Wang X N 2021 Lect. Notes Phys. 987 195
[29] Liu Y C, Huang X G 2020 Nucl. Sci. Tech. 31 56Google Scholar
[30] Jiang Y, Guo X, Zhuang P 2021 Lect. Notes Phys. 987 167
[31] Gao J H, Liang Z T, Wang Q 2021 Int. J. Mod. Phys. A 36 2130001Google Scholar
[32] Hidaka Y, Pu P, Wang Q, Yang D L 2022 Prog. Part. Nucl. Phys. 127 103989Google Scholar
[33] Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90Google Scholar
[34] Stephanov M A, Yin Y 2012 Phys. Rev. Lett. 109 162001Google Scholar
[35] Son D T, Yamamoto N 2013 Phys. Rev. D 87 085016Google Scholar
[36] Chen J W, Pu S, Wang Q, Wang X N 2013 Phys. Rev. Lett. 110 262301Google Scholar
[37] Manuel C, Torres-Rincon J M 2014 Phys. Rev. D 89 096002Google Scholar
[38] Manuel C, Torres-Rincon J M 2014 Phys. Rev. D 90 076007Google Scholar
[39] Chen J Y, Son D T, Stephanov M A, Yee H U, Yin Y 2014 Phys. Rev. Lett. 113 182302Google Scholar
[40] Chen J Y, Son D T, Stephanov M A 2015 Phys. Rev. Lett. 115 021601Google Scholar
[41] Hidaka Y, Pu S, Yang D L 2017 Phys. Rev. D 95 091901Google Scholar
[42] Mueller N, Venugopalan R 2018 Phys. Rev. D 97 051901Google Scholar
[43] Huang A, Shi S, Jiang Y, Liao J, Zhuang P 2018 Phys. Rev. D 98 036010Google Scholar
[44] Gao J H, Liang Z T, Wang Q, Wang X N 2018 Phys. Rev. D 98 036019Google Scholar
[45] Liu Y C, Gao L L, Mameda K, Huang X G 2019 Phys. Rev. D 99 085014Google Scholar
[46] Sun Y, Ko C M, Li F 2016 Phys. Rev. C 94 045204
[47] Sun Y, Ko C M 2017 Phys. Rev. C 95 034909Google Scholar
[48] Sun Y, Ko C M 2017 Phys. Rev. C 96 024906Google Scholar
[49] Sun Y, Ko C M 2018 Phys. Rev. C 98 014911
[50] Sun Y, Ko C M 2019 Phys. Rev. C 99 011903Google Scholar
[51] Zhou W H, Xu J 2018 Phys. Rev. C 98 044904Google Scholar
[52] Zhou W H, Xu J 2019 Phys. Lett. B 798 134932Google Scholar
[53] Liu S Y F, Sun Y, Ko C M 2020 Phys. Rev. Lett. 125 062301Google Scholar
[54] Wigner E P 1932 Phys. Rev. 40 749Google Scholar
[55] Heinz U W 1983 Phys. Rev. Lett. 51 351Google Scholar
[56] Elze H T, Gyulassy M, Vasak D 1986 Nucl. Phys. B 276 706Google Scholar
[57] Elze H T, Gyulassy M, Vasak D 1987 Annals Phys. 173 462Google Scholar
[58] Bialynicki-Birula I, Davis E D, Rafelski J 1993 Phys. Lett. B 311 329Google Scholar
[59] Zhuang P F, Heinz U W 1998 Phys. Rev. D 57 6525Google Scholar
[60] Guo X 2020 Chin. Phys. C 44 104106Google Scholar
[61] Ma S X, Gao J H 2022 arXiv: 2209.10737[hep-ph]
[62] Zhang J J, Fang R H, Wang Q, Wang X N 2019 Phys. Rev. C 100 064904
[63] Martin P C, Schwinger J S 1959 Phys. Rev. 115 1342Google Scholar
[64] Keldysh L V 1964 Zh. Eksp. Thero. Fiz. 47 1515
[65] Fang S, Pu S, Yang D L 2022 Phys. Rev. D 106 016002Google Scholar
[66] Wang Z, Guo X, Zhuang P 2021 Eur. Phys. J. C 81 799Google Scholar
[67] Sheng X L, Wang Q, Rischke D H 2022 Phys. Rev. D 106 L111901Google Scholar
[68] Wang Z, Zhuang P 2021 arXiv: 2105.00915
[69] Gao J H, Qi B, Wang S Y 2014 Phys. Rev. D 90 083001Google Scholar
[70] Wu H Z, Pang L G, Huang X G, Wang Q 2019 Phys. Rev. Rese. 1 033058
[71] Lin S 2022 Phys. Rev. D 105 076017Google Scholar
[72] Yang D L 2022 JHEP 06 140
Catalog
Metrics
- Abstract views: 3470
- PDF Downloads: 99
- Cited By: 0