-
Multiferroic tunnel junctions (MFTJs)—characterized by a ferroelectric barrier encapsulated between two ferromagnetic electrodes—represent a highly promising platform for next-generation nonvolatile memory applications. The recent discovery of intrinsic ferromagnetism and ferroelectricity in van der Waals (vdW) materials further provides a compelling material foundation for constructing multifunctional MFTJs based on vdW heterostructures. In this paper, towards high-performance and multifunctional van der Waals multiferroic tunnel junctions (vdW-MFTJs) devices, we investigate the spin-dependent transport properties of vdW-MFTJs with a bilayer VTe2 sliding ferroelectric barrier and Fe3GaTe2/Fe3GeTe2 magnetic electrodes using first-principles calculations based on density functional theory (DFT). Our results reveal that multiple non-volatile resistance states can be achieved by controlling the polarization direction of the ferroelectric barrier and the magnetization configuration of the ferromagnetic electrodes in the Fe3GaTe2/bilayer VTe2/Fe3GeTe2 MFTJs. Specifically, when the double-layer ferroelectric material VTe2 undergoes relative interlayer slippage, the polarization of the ferroelectric barrier switches from a left-oriented state ( P←) to a right-oriented state ( P→). Consequently, the tunneling magnetoresistance (TMR) ratio at the Fermi level increases from 7.27 × 105% to 1.01 × 106%. Moreover, switching the magnetization configuration of the ferromagnetic electrodes from parallel alignment (M↑↑) to antiparallel alignment (M↑↓) leads to an almost twofold increase in the tunneling electroresistance (TER) ratio. Furthermore, nearly 100% spin filtering effciency is observed across all four non-volatile resistance states of the MFTJs. These findings demonstrate that the engineered Fe3GaTe2/bilayer VTe2/Fe3GeTe2 MFTJs holds promising potential for applications in multi-state non-volatile memory and spin filters, providing a versatile platform for developing multifunctional electronic devices.
-
Keywords:
- Multi-ferroiron tunnel junctions /
- Quantum transport /
- Spin filtration /
- Nonvolatile resistors
-
[1] Theis T N, Wong H S P 2017 Computing in science & engineering 1941
[2] Lundstrom M S, Alam M A 2022 Science 378722
[3] Wong H S P, Salahuddin S 2015 Nature nanotechnology 10191
[4] Lanigan-Atkins T, He X, Krogstad M, Pajerowski D, Abernathy D, Xu G N, Xu Z, Chung D Y, Kanatzidis M, Rosenkranz S, et al. 2021 Nature materials 20977
[5] Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nature nanotechnology 5266
[6] Apalkov D, Khvalkovskiy A, Watts S, Nikitin V, Tang X, Lottis D, Moon K, Luo X, Chen E, Ong A, et al. 2013 ACM Journal on Emerging Technologies in Computing Systems (JETC) 91
[7] Wadley P, Howells B, Železnỳ J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S, et al. 2016 Science 351587
[8] Manchon A, Železnỳ J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Reviews of Modern Physics 91035004
[9] Dieny B, Prejbeanu I L, Garello K, Gambardella P, Freitas P, Lehndorff R, Raberg W, Ebels U, Demokritov S O, Akerman J, et al. 2020 Nature Electronics 3446
[10] Velev J P, Duan C G, Burton J, Smogunov A, Niranjan M K, Tosatti E, Jaswal S, Tsymbal E Y 2009 Nano letters 9427
[11] Barrionuevo D, Zhang L, Ortega N, Sokolov A, Kumar A, Misra P, Scott J, Katiyar R 2014 Nanotechnology 25495203
[12] Merodio P, Kalitsov A, Chshiev M, Velev J 2016 Physical Review Applied 5064006
[13] Manipatruni S, Nikonov D E, Lin C C, Gosavi T A, Liu H, Prasad B, Huang Y L, Bonturim E, Ramesh R, Young I A 2019 Nature 56535
[14] Guo X H, Zhu L, Cao Z L, Yao K L 2024 Physical Chemistry Chemical Physics 263531
[15] ZHANG J, YU P 2013 Journal of the Chinese Ceramic Society 41905
[16] Yin Y, Li Q 2017 Journal of Materiomics 3245
[17] Zhang Y, Li X, Sheng J, Yu S, Zhang J, Su Y 2023 Applied Physics Letters 123
[18] Lei Y, Xu Y, Wang M, Zhu G, Jin Z 2021 Small 172005495
[19] Zheng C, Yu L, Zhu L, Collins J L, Kim D, Lou Y, Xu C, Li M, Wei Z, Zhang Y, et al. 2018 Science advances 4 eaar7720
[20] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, et al. 2016 Nature communications 71
[21] Feng Y, Han J, Zhang K, Lin X, Gao G, Yang Q, Meng S 2024 Physical Review B 109085433
[22] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, et al. 2018 Nature 56394
[23] Ke J, Yang M, Xia W, Zhu H, Liu C, Chen R, Dong C, Liu W, Shi M, Guo Y, et al. 2020 Journal of Physics: Condensed Matter 32405805
[24] Huang M, Ma Z, Wang S, Li S, Li M, Xiang J, Liu P, Hu G, Zhang Z, Sun Z, et al. 20212D Materials 8031003
[25] Jiang P, Wang C, Chen D, Zhong Z, Yuan Z, Lu Z Y, Ji W 2019 Physical Review B 99144401
[26] Su Y, Li X, Zhu M, Zhang J, You L, Tsymbal E Y 2020 Nano Letters 21175
[27] Yan Z, Li Z, Han Y, Qiao Z, Xu X 2022 Physical Review B 105075423
[28] Chen Y, Tang Z, Dai M, Luo X, Zheng Y 2022 Nanoscale 148849
[29] Wu M 2021 Nature Reviews Physics 3726
[30] Wan Y, Hu T, Mao X, Fu J, Yuan K, Song Y, Gan X, Xu X, Xue M, Cheng X, et al. 2022 Physical Review Letters 128067601
[31] Yasuda K, Wang X, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Science 3721458
[32] Wang C, An Y 2021 Applied Surface Science 538148098
[33] Fuh H R, Chang C R, Wang Y K, Evans R F, Chantrell R W, Jeng H T 2016 Scientific reports 632625
[34] Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, et al. 2018 Nature materials 17778
[35] Taylor J, Guo H, Wang J 2001 Physical Review B 63245407
[36] Blöchl P E 1994 Physical review B 5017953
[37] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Physical review B 466671
[38] Monkhorst H J, Pack J D 1976 Physical review B 135188
[39] Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Nature materials 3868
[40] Tao L, Wang J 2016 Applied Physics Letters 108
[41] Ma J, Luo X, Zheng Y 2024 npj Computational Materials 10102
Metrics
- Abstract views: 123
- PDF Downloads: 2
- Cited By: 0