Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrochemical Pourbaix diagrams of monolayer MoSSe with different atomic ratios of chalcogens

Li Yan Ma Xiang-Chao Huang Xi

Citation:

Electrochemical Pourbaix diagrams of monolayer MoSSe with different atomic ratios of chalcogens

Li Yan, Ma Xiang-Chao, Huang Xi
PDF
HTML
Get Citation
  • MoSSe material is a very promising photoelectric material, and its application environment is aqueous solution. However, there is no research of the electrochemical stability of MoSSe materials in aqueous solution. In this work, the Pourbaix diagrams of monolayer MoSSe with different atomic ratios of molybdenum, sulfur and selenium are constructed based on density functional theory, and the thermodynamic stabilities and electrochemical corrosion behaviors under different pH values and electrode potentials are studied. The study of the pourbaix diagram of MoSSe shows that part of the corrosion-free region of MoSSe exists within the stable region of water in the Pourbaix diagram, indicating that the MoSSe can exist stably in the water environment. Compared with alkaline solutions, MoSSe has good corrosion resistance in acidic solution and neutral solution. The Pourbaix diagram of Mo4S2Se6, Mo4S6Se2, Mo4S7Se and Mo4SSe7 show that in the case of high molar fraction of sulfur in monolayer MoSSe with different atomic ratios of molybdenum, sulfur and selenium, the conditions for the stable existence of materials in aqueous solution can have a larger range, and the corrosion resistance becomes better. In the case of high molar fractions of selenium in monolayer MoSSe with different atomic ratios of molybdenum, sulfur and selenium, the range of conditions for the stable existence of materials in aqueous solution becomes smaller, and the corrosion resistance becomes worse. In this work, the stabilities and corrosion behaviors of monolayer MoSSe with different atomic ratios of molybdenum, sulfur and selenium in aqueous solution are predicted, and the degradation behaviors of MoSSe materials are further explored, which can provide theoretical guidance for the application of MoSSe materials in the field of optoelectronics.
      Corresponding author: Ma Xiang-Chao, xcma@xidian.edu.cn
    • Funds: Project supported by the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2022JZ-04), the State Key Development Program for the National Natural Science Foundation of China (Grant Nos. 11704298, 61904138 ) .
    [1]

    Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, Li L J 2017 Nat. Nanotechnol. 12 744Google Scholar

    [2]

    Yin W J, Liu Y, Wen B, Li X B, Chai Y F, Wei X L, Ma S, Teobaldi G 2021 Dalton Trans. 50 10252Google Scholar

    [3]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W B, Guo H, Jin Z H, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [4]

    Paez-Ornelas J I, Ponce-Pérez R, Fernández-Escamilla H N, Hoat D M, Murillo-Bracamontes E A, Moreno-Armenta M G, Galván D H, Guerrero-Sánchez J 2021 Sci. Rep. 11 1Google Scholar

    [5]

    Guan Z Y, Ni S, Hu S L 2018 J. Phys. Chem. C 122 6209Google Scholar

    [6]

    Singh A, Jain M, Bhattacharya S 2021 Nanoscale Adv. 3 2837Google Scholar

    [7]

    Teets T S, Nocera D G 2011 Chem. Commun. 47 9268Google Scholar

    [8]

    Hansen H A, Rossmeisl J, Nørskov J K 2008 Phys. Chem. Chem. Phys. 10 3722Google Scholar

    [9]

    彭少方, 张昭 1992 新疆有色金属 1 28

    Peng S F, Zhang Z 1992 Xinjiang Youse Jinshu 1 28

    [10]

    Beverskog B, Puigdomenech I 1997 Corros. Sci. 39 969Google Scholar

    [11]

    Ding R, Shang J X, Wang F H, Chen Y 2018 Comput. Mater. Sci. 143 431Google Scholar

    [12]

    Huang L F, Rondinelli J M 2015 Phys. Rev. B 92 245126Google Scholar

    [13]

    Dong X X, Wei B, Legut D, Zhang H J, Zhang R F 2021 Phys. Chem. Chem. Phys. 23 19602Google Scholar

    [14]

    Perry S C, Gateman S M, Stephens L I, Lacasse R, Schulz R, Mauzaroll J 2019 J. Electrochem. Soc. 166 3186Google Scholar

    [15]

    Bajdich M, García-Mota M, Vojvodic A, Nørskov J K, Bell A T 2013 J. Am. Chem. Soc. 135 13521Google Scholar

    [16]

    Persson K A, Waldwick B, Lazic P, Ceder G 2012 Phys. Rev. B 85 235438Google Scholar

    [17]

    Chen J, Selloni A 2013 J. Phys. Chem. C 117 20002Google Scholar

    [18]

    Wang L, Maxisch T, Ceder G 2006 Phys. Rev. B 73 195107Google Scholar

    [19]

    Zeng Z H, Chan M K Y, Zhao Z J, Kubal J, Fan D X, Greeley J 2015 J. Phys. Chem. C 119 18177Google Scholar

    [20]

    Exner K S 2017 ChemElectroChem 4 3231Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 80 891Google Scholar

    [22]

    林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高 2021 物理学报 70 138201Google Scholar

    Lin H B, Lin C, Chen Y, Zhong K H, Zhang J M, Xu G G, Huang Z G 2021 Acta Phys. Sin. 70 138201Google Scholar

    [23]

    Zunger A, Wei S H, Ferreira L G, Bernard J E 1990 Phys. Rev. Lett. 65 353Google Scholar

    [24]

    Grau-Crespo R, Hamad S, Catlow C R A, Leeuw N H D 2007 J. Phys. Condens. Matter 19 256201Google Scholar

    [25]

    Sen S, Ghosh H 2016 Eur. Phys. J. B 89 277Google Scholar

    [26]

    Binder K 1981 Phys. Rev. Lett. 47 693Google Scholar

    [27]

    Gale J D 1997 J. Chem. Soc. Faraday Trans. 93 629Google Scholar

    [28]

    Huang L F, Rondinelli J M 2015 Physical Review B 92 245126

    [29]

    Barry T I 1980 ACS Symp. Ser. 133 681

    [30]

    Lee J B 1981 Corrosion 37 467Google Scholar

    [31]

    Muñoz-Portero M J, García-Antón J, Guiñón J L, Pérez-Herranz V 2009 Corros. Sci. 51 807Google Scholar

    [32]

    Nikolaychuk P A, Tyurin A G 2011 Mater. Sci. 24 101

    [33]

    Protopopoff E, Marcus P 2012 Electrochim. Acta 63 22Google Scholar

    [34]

    Wagman D D, Evans W H, Parker V B, Schemm R H, Halow I 1982 J. Phys. Chem. Ref. Data 11 2

    [35]

    Beverskog B, Puigdomenech I 1997 Corrosion Science 39 969

    [36]

    吴雄伟, 彭穗, 冯必钧, 山村朝雄, 矢野贵, 佐藤伊佐務, 刘素琴, 黄可龙 2011 无机化学学报 26 535

    Wu X W, Peng S, Feng B J, Tomoo Y, Yano T, Isamu S, Liu S Q, Huang K L 2011 Chinese J. Inorg. Chem. 26 535

    [37]

    Gana S J, Egiebor N, Ankumah R O 2011 Mater. Sci. Appl. 2 81

    [38]

    Nishimoto M, Muto I, Sugawara Y, Hara N 2019 J. Electrochem. Soc. 166 3081

    [39]

    Choudhary L, Macdonald D D, Alfantazi A 2015 Corrosion 71 1147Google Scholar

    [40]

    Alhasan R, Nasim M J, Jacob C, Gaucher C 2019 Curr. Pharmacol. Rep. 5 163Google Scholar

  • 图 1  计算流程图

    Figure 1.  Calculation flow chart.

    图 2  MoSSe材料的Pourbaix图(图中不同颜色区域对应可能存在的物质参照表5)

    Figure 2.  Pourbaix diagram of MoSSe material(Refer to Table 5 for the different colored areas in the figure correspond to possible substances).

    图 3  MoSSe材料在不同pH下吉布斯自由能随电极电位变化图 (a) pH = 0; (b) pH = 7; (c) pH = 14

    Figure 3.  Diagram of gibbs free energy variation with electrode potential variation of MoSSe material under different conditions: (a) pH = 0; (b) pH = 7; (c) pH = 14.

    图 4  Mo4S2Se6和Mo4SSe7材料的Pourbaix图(图中不同颜色区域对应可能存在的物质参照5) (a) Mo4S2Se6材料; (b) Mo4SSe7材料

    Figure 4.  Pourbaix diagram of Mo4S2Se6 and Mo4SSe7 materials (Refer to Table 5 for the different colored areas in the figure correspond to possible substances): (a) Mo4S2Se6 material; (b) Mo4S2Se6 material.

    图 5  Mo4S2Se6 (a)和Mo4SSe7 (b)材料在pH = 7条件下吉布斯自由能随电极电位变化图

    Figure 5.  Diagram of gibbs free energy variation with electrode potential variation of Mo4S2Se6 (a) and Mo4SSe7 (b) materials at pH = 7

    图 6  Mo4S6Se2 (a)和Mo4S7Se (b)材料的Pourbaix图(图中不同颜色区域对应可能存在的物质参照5)

    Figure 6.  Pourbaix diagram of Mo4S6Se2 (a) and Mo4S7Se (b) materials (Refer to Table 5 for the different colored areas in the figure correspond to possible substances).

    图 7  不同条件下的吉布斯自由能随电极电位变化图 (a) Mo4S6Se2材料在pH = 0时; (b) Mo4S6Se2材料在pH = 7时; (c) Mo4S6Se2材料在pH = 14时; (d) Mo4S7Se材料在pH = 0时; (e) Mo4S7Se材料在pH = 7时; (f) Mo4S7Se材料在pH = 14时

    Figure 7.  Diagram of Gibbs free energy variation with electrode potential variation under different conditions: (a) Mo4S6Se2 material at pH=0; (b) Mo4S6Se2 material at pH = 7; (c) Mo4S6Se2 material at pH = 14; (d) Mo4S7Se material at pH = 0; (e) Mo4S7Se material at pH = 7; (f) Mo4S7Se material at pH = 14.

    图 8  不同材料的能带结构 (a) Mo4S7Se; (b) Mo4S6Se2; (c) Mo4SSe7; (d) Mo4S2Se6

    Figure 8.  Band structure of different materials: (a) Mo4S7Se; (b) Mo4S6Se2; (c) Mo4SSe7; (d) Mo4S2Se6.

    图 9  Mo4S7Se, Mo4S6Se2, Mo4S2Se6和Mo4SSe7材料的光吸收系数

    Figure 9.  Optical absorption coefficients of Mo4S7Se, Mo4S6Se2, Mo4SSe7 and Mo4S2Se6.

    表 1  不同比例MoSSe材料的标准化学势

    Table 1.  Standard chemical potential of MoSSe materials with different proportions.

    物质标准化学势 μ0/eV
    MoSSe–2.21
    Mo4S2Se6–8.357
    Mo4S6Se2–9.721
    Mo4SSe7–7.990
    Mo4S7Se–10.038
    DownLoad: CSV

    表 2  Mo, S和Se元素在水溶液中可能形成的离子状态物质及其标准化学势

    Table 2.  The possible ionic state substance of Mo, S and Se elements in aqueous solution and their standard chemical potentials.

    物质标准化学势μ0/eV文献
    Mo3+–0.60[30]
    MoO42––8.02[31]
    MoO22+–4.24[32]
    S2–0.89[33]
    S22–0.82[34]
    SO32––5.04[34]
    SO42––7.72[33]
    HS0.13[33]
    HSO4–7.84[33]
    HS2O4–6.37[35]
    Se2–1.34[34]
    SeO32––3.83[34]
    SeO42––4.57[34]
    HSe0.46[34]
    HSeO3–4.26[34]
    HSeO4–4.69[34]
    DownLoad: CSV

    表 3  Mo, S和Se元素形成的固态物质的空间群和理论化学势

    Table 3.  The space group and theoretical chemical potentials of solid substances formed by Mo, S and Se elements.

    物质标准化学势μ0/eV空间群
    Mo0${Im} \bar 3m$
    MoO2–5.53${ {{P} }{4_2}/{{mnm} } }$
    MoO3–6.92$P2_1/c$
    S0$P2/c$
    Se0$P2/c$
    MoSe–0.23$P \bar 6 m2$
    MoSe2–6.92$P\bar 3 m1$
    MoS2–2.34$P6_3/mmc$
    DownLoad: CSV

    表 4  Mo, S和Se元素在水溶液中可能形成的溶液状态物质及其标准化学势

    Table 4.  The The possible aqueous state substance of Mo, S and Se elements in aqueous solution and their standard chemical potentials.

    物质标准化学势μ0/eV文献
    H2S(aq)–0.29[33]
    H2SO4(aq)–7.72[34]
    H2Se(aq)0.23[34]
    H2SO3(aq)–4.43[34]
    DownLoad: CSV

    表 5  编号对照表

    Table 5.  Numbering reference table.

    编号物质(溶液中)
    1MoO3 + HSO4 + HSeO4
    2MoO3 + HSO4 + SeO42–
    3MoO3 + SO42– + SeO42–
    4MoO42– + SO42– + SeO42–
    5MoO42– + SO42– + SeO32–
    6MoO3 + SO42– + SeO32–
    7MoO3 + SO42– + HSeO3
    8MoO3 + SO42– + H2SeO3
    9MoO3 + HSO4 + H2SeO3
    10MoO3 + HSO4 + Se
    11MoO3 + SO42– + Se
    12MoO42– + SO42– + Se
    13MoO42– + SO42– + HSe
    14MoO42– + SO42– + Se2–
    15MoO42– + S2– + Se2–
    16MoO42– + S2– + HSe
    17MoO42– + MoSe2 + S2–
    18MoO42– + MoSe2 + SO42–
    19MoO3 + MoSe2 + SO42–
    20MoO3 + MoSe2 + HSO4
    21Mo3+ + HSO4 + Se
    22Mo3+ + MoS2 + Se
    23Mo3+ + MoSe2 + H2S
    24MoSSe
    25Mo + MoSe2 + S2–
    26Mo + MoSe2 + HS
    27Mo + MoSe2 + H2S
    28Mo + H2S + H2Se
    29Mo + H2S + HSe
    30Mo + HS + HSe
    31Mo + S2– + HSe
    32Mo + S2– + Se2–
    33Mo3+ + MoSe2 + HSO4
    34MoO42– + HSe + Mo4S5Se3
    35Mo3+ + Se + Mo4S5Se3
    36Mo + HSe + Mo4S5Se3
    37Mo3+ + Se + Mo4S6Se2
    38MoO3 + Se + Mo4S5Se3
    39Mo4S2Se6
    40MoO42– + MoSe2 + HS
    41MoO2 + MoSe2 + HS
    42MoO3 + MoSe2 + HS
    43Mo4SSe7
    44Mo4S6Se2
    45Mo4S7Se
    46Mo4S5Se3
    DownLoad: CSV
  • [1]

    Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, Li L J 2017 Nat. Nanotechnol. 12 744Google Scholar

    [2]

    Yin W J, Liu Y, Wen B, Li X B, Chai Y F, Wei X L, Ma S, Teobaldi G 2021 Dalton Trans. 50 10252Google Scholar

    [3]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W B, Guo H, Jin Z H, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [4]

    Paez-Ornelas J I, Ponce-Pérez R, Fernández-Escamilla H N, Hoat D M, Murillo-Bracamontes E A, Moreno-Armenta M G, Galván D H, Guerrero-Sánchez J 2021 Sci. Rep. 11 1Google Scholar

    [5]

    Guan Z Y, Ni S, Hu S L 2018 J. Phys. Chem. C 122 6209Google Scholar

    [6]

    Singh A, Jain M, Bhattacharya S 2021 Nanoscale Adv. 3 2837Google Scholar

    [7]

    Teets T S, Nocera D G 2011 Chem. Commun. 47 9268Google Scholar

    [8]

    Hansen H A, Rossmeisl J, Nørskov J K 2008 Phys. Chem. Chem. Phys. 10 3722Google Scholar

    [9]

    彭少方, 张昭 1992 新疆有色金属 1 28

    Peng S F, Zhang Z 1992 Xinjiang Youse Jinshu 1 28

    [10]

    Beverskog B, Puigdomenech I 1997 Corros. Sci. 39 969Google Scholar

    [11]

    Ding R, Shang J X, Wang F H, Chen Y 2018 Comput. Mater. Sci. 143 431Google Scholar

    [12]

    Huang L F, Rondinelli J M 2015 Phys. Rev. B 92 245126Google Scholar

    [13]

    Dong X X, Wei B, Legut D, Zhang H J, Zhang R F 2021 Phys. Chem. Chem. Phys. 23 19602Google Scholar

    [14]

    Perry S C, Gateman S M, Stephens L I, Lacasse R, Schulz R, Mauzaroll J 2019 J. Electrochem. Soc. 166 3186Google Scholar

    [15]

    Bajdich M, García-Mota M, Vojvodic A, Nørskov J K, Bell A T 2013 J. Am. Chem. Soc. 135 13521Google Scholar

    [16]

    Persson K A, Waldwick B, Lazic P, Ceder G 2012 Phys. Rev. B 85 235438Google Scholar

    [17]

    Chen J, Selloni A 2013 J. Phys. Chem. C 117 20002Google Scholar

    [18]

    Wang L, Maxisch T, Ceder G 2006 Phys. Rev. B 73 195107Google Scholar

    [19]

    Zeng Z H, Chan M K Y, Zhao Z J, Kubal J, Fan D X, Greeley J 2015 J. Phys. Chem. C 119 18177Google Scholar

    [20]

    Exner K S 2017 ChemElectroChem 4 3231Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 80 891Google Scholar

    [22]

    林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高 2021 物理学报 70 138201Google Scholar

    Lin H B, Lin C, Chen Y, Zhong K H, Zhang J M, Xu G G, Huang Z G 2021 Acta Phys. Sin. 70 138201Google Scholar

    [23]

    Zunger A, Wei S H, Ferreira L G, Bernard J E 1990 Phys. Rev. Lett. 65 353Google Scholar

    [24]

    Grau-Crespo R, Hamad S, Catlow C R A, Leeuw N H D 2007 J. Phys. Condens. Matter 19 256201Google Scholar

    [25]

    Sen S, Ghosh H 2016 Eur. Phys. J. B 89 277Google Scholar

    [26]

    Binder K 1981 Phys. Rev. Lett. 47 693Google Scholar

    [27]

    Gale J D 1997 J. Chem. Soc. Faraday Trans. 93 629Google Scholar

    [28]

    Huang L F, Rondinelli J M 2015 Physical Review B 92 245126

    [29]

    Barry T I 1980 ACS Symp. Ser. 133 681

    [30]

    Lee J B 1981 Corrosion 37 467Google Scholar

    [31]

    Muñoz-Portero M J, García-Antón J, Guiñón J L, Pérez-Herranz V 2009 Corros. Sci. 51 807Google Scholar

    [32]

    Nikolaychuk P A, Tyurin A G 2011 Mater. Sci. 24 101

    [33]

    Protopopoff E, Marcus P 2012 Electrochim. Acta 63 22Google Scholar

    [34]

    Wagman D D, Evans W H, Parker V B, Schemm R H, Halow I 1982 J. Phys. Chem. Ref. Data 11 2

    [35]

    Beverskog B, Puigdomenech I 1997 Corrosion Science 39 969

    [36]

    吴雄伟, 彭穗, 冯必钧, 山村朝雄, 矢野贵, 佐藤伊佐務, 刘素琴, 黄可龙 2011 无机化学学报 26 535

    Wu X W, Peng S, Feng B J, Tomoo Y, Yano T, Isamu S, Liu S Q, Huang K L 2011 Chinese J. Inorg. Chem. 26 535

    [37]

    Gana S J, Egiebor N, Ankumah R O 2011 Mater. Sci. Appl. 2 81

    [38]

    Nishimoto M, Muto I, Sugawara Y, Hara N 2019 J. Electrochem. Soc. 166 3081

    [39]

    Choudhary L, Macdonald D D, Alfantazi A 2015 Corrosion 71 1147Google Scholar

    [40]

    Alhasan R, Nasim M J, Jacob C, Gaucher C 2019 Curr. Pharmacol. Rep. 5 163Google Scholar

  • [1] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [2] Yao Yi-Zhou, Cao Dan, Yan Jie, Liu Xue-Yin, Wang Jian-Feng, Jiang Zhou-Ting, Shu Hai-Bo. A first-principles study on environmental stability and optoelectronic properties of bismuth oxychloride/ cesium lead chloride van der Waals heterojunctions. Acta Physica Sinica, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [3] Lin Hong-Bin, Lin Chun, Chen Yue, Zhong Ke-Hua, Zhang Jian-Min, Xu Gui-Gui, Huang Zhi-Gao. First-principles study of effect of Mg doping on structural stability and electronic structure of LiCoO2 cathode material. Acta Physica Sinica, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [4] Hu Qian-Ku, Qin Shuang-Hong, Wu Qing-Hua, Li Dan-Dan, Zhang Bin, Yuan Wen-Feng, Wang Li-Bo, Zhou Ai-Guo. First-principles calculations of stabilities and physical properties of ternary niobium borocarbides and tantalum borocarbides. Acta Physica Sinica, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [5] Wang Dan, Zou Juan, Tang Li-Ming. Stability and electronic structure of hydrogenated two-dimensional transition metal dichalcogenides: First-principles study. Acta Physica Sinica, 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [6] Song Qing-Gong, Wang Li-Jie, Zhu Yan-Xia, Kang Jian-Hai, Gu Wei-Feng, Wang Ming-Chao, Liu Zhi-Feng. Effects of Si and Y co-doping on stability and oxidation resistance of γ-TiAl based alloys. Acta Physica Sinica, 2019, 68(19): 196101. doi: 10.7498/aps.68.20190490
    [7] Chen Qing-Ling, Dai Zhen-Hong, Liu Zhao-Qing, An Yu-Feng, Liu Yue-Lin. First-principles study on the structure stability and doping performance of double layer h-BN/Graphene. Acta Physica Sinica, 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [8] Yang Jian-Hui, Chen Yan-Xing, Wu Li-Hui, Wei Shi-Hao. First-principles study on stability and electronic properties of MC and Mn+1ACn phases. Acta Physica Sinica, 2014, 63(23): 237301. doi: 10.7498/aps.63.237301
    [9] Yang Xiu-Feng, Liu Mou-Bin. Improvement on stress instability in smoothed particle hydrodynamics. Acta Physica Sinica, 2012, 61(22): 224701. doi: 10.7498/aps.61.224701
    [10] Cheng Zhi-Da, Zhu Jing, Sun Tie-Yu. Stability and magnetism of fcc single-crystal nickel nanowires by first principles calculations. Acta Physica Sinica, 2011, 60(3): 037504. doi: 10.7498/aps.60.037504
    [11] Chen Hai-Jun, Li Gao-Qing, Xue Ju-Kui. Variational-method analysis of stability of Bose-Fermi mixture. Acta Physica Sinica, 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.1
    [12] Liu Hao-Ran, Zhu Zhan-Long, Shi Pei-Ming. Stability analysis of a relative rotation time-delay nonlinear dynamic system. Acta Physica Sinica, 2010, 59(10): 6770-6777. doi: 10.7498/aps.59.6770
    [13] Liu Shuang, Liu Bin, Zhang Ye-Kuan, Wen Yan. Hopf bifurcation and stability of periodic solutions in a nonlinear relative rotation dynamical system with time delay. Acta Physica Sinica, 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [14] Meng Zong, Liu Bin. Stability of equilibrium state of a kind of nonlinear relative rotation dynamic system and associated harmonic approximate solution. Acta Physica Sinica, 2008, 57(3): 1329-1334. doi: 10.7498/aps.57.1329
    [15] Shi Pei-Ming, Liu Bin, Liu Shuang. Stability and approximate solution of a relative-rotation nonlinear dynamical system under harmonic excitation. Acta Physica Sinica, 2008, 57(8): 4675-4684. doi: 10.7498/aps.57.4675
    [16] Wang Zuo-Lei. Stability and Hopf bifurcation of the simplified Lang-Kobayashi equation. Acta Physica Sinica, 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [17] Meng Zong, Liu Bin. Stability of relativistic rotational nonlinear dynamic equation and solution for a kind of nonlinear elastic coefficients. Acta Physica Sinica, 2007, 56(11): 6194-6198. doi: 10.7498/aps.56.6194
    [18] Xie Li, Lei Yin-Zhao. Uniqueness and stability of solution to the linear transient eddy current electromagnetic field problem for determining solution. Acta Physica Sinica, 2006, 55(9): 4397-4406. doi: 10.7498/aps.55.4397
    [19] Wang Yan, Han Xiao-Yan, Ren Hui-Zhi, Hou Guo-Fu, Guo Qun-Chao, Zhu Feng, Zhang De-Kun, Sun Jian, Xue Jun-Ming, Zhao Ying, Geng Xin-Hua. Stability of mixed phase silicon thin film material under light soaking. Acta Physica Sinica, 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [20] Zhang Kai, Feng Jun. Symmetry and stability of a relativistic birkhoff system. Acta Physica Sinica, 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
Metrics
  • Abstract views:  5589
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  02 August 2022
  • Accepted Date:  04 December 2022
  • Available Online:  28 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回