Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evaluation of Large Language Models in the Full Process of Battery Research and Development and Inorganic Solid Electrolyte Materials Database

Siyuan Wu Hong Li

Citation:

Evaluation of Large Language Models in the Full Process of Battery Research and Development and Inorganic Solid Electrolyte Materials Database

Siyuan Wu, Hong Li
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The emergence of large language models has significantly advanced scientific research. Representative models such as ChatGPT and DeepSeek R1 have brought notable transformations to the paradigm of scientific research. While these models are general-purpose, they have demonstrated strong generalization capabilities in the field of batteries, particularly in solid-state battery research. In this study, we systematically screened 5,309,268 articles from key journals up to 2024, accurately extracting 124,021 relevant battery-related papers.Additionally, we comprehensively searched through 17,559,750 patent applications and granted patents from the European Patent Office and the United States Patent and Trademark Office up to 2024, from which we filtered out 125,716 battery-related patents. Utilizing this extensive collection of literature and patents, we conducted numerous experiments to evaluate the knowledge base, in context learning, instruction-following, and structured output capabilities of language models. Through multi-dimensional model evaluations and analyses, we found the following: first, the model exhibited high accuracy in screening literature on inorganic solid-state electrolytes, equivalent to the level of a doctoral student in the relevant field. Based on 10,604 data entries, the model demonstrated good recognition capabilities in identifying literature on in-situ polymerization/solidification technology. However, its understanding accuracy for this emerging technology was slightly lower than that for solid-state electrolytes, requiring further fine-tuning to improve accuracy. Second, through testing with 10,604 data entries, the model achieved reliable accuracy in extracting inorganic ionic conductivity data. Third, based on solid-state lithium battery patents from four companies in South Korea and Japan over the past 20 years, the model proved effective in analyzing historical patent trends and conducting comparative analyses. Furthermore, the model-generated personalized literature reports based on the latest publications also showed high accuracy.Fourth, by leveraging the model's iteration strategies, we enabled DeepSeek to engage in self-thinking, thereby providing more comprehensive responses. The research results indicate that language models possess strong capabilities in content summarization and trend analysis. However, we also observed that the model may occasionally exhibit issues with numerical hallucinations. Additionally, while processing vast amounts of battery-related data, the model still has room for optimization in engineering applications. Based on the characteristics of the model and the above test results, we utilized the DeepSeek V3-0324 model to extract data on inorganic solid electrolyte materials, including 5,970 entries of ionic conductivity, 387 entries of diffusion coefficients, and 3,094 entries of migration barriers. Additionally, it includes over 1,000 entries of data related to chemical, electrochemical, and mechanical properties, covering nearly all physical, chemical, and electrochemical properties associated with inorganic solid electrolytes. This also signifies that the application of large language models in scientific research has transitioned from assisting research to actively advancing its development. The datasets presented in this paper can be acess at the website: https://cmpdc.iphy.ac.cn/literature/SSE.html (DOI: https://doi.org/10.57760/sciencedb.j00213.00172).
  • [1]

    ChatGPT ChatGPT website

    [2]

    DeepSeek-AI, 2025 arXiv 2501.12948

    [3]

    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin 2017 arXiv 1706.03762

    [4]

    Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever 2018 OpenAI Blog

    [5]

    Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova 2018 arXiv 1810.04805

    [6]

    Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019 OpenAI Blog

    [7]

    Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, Dario Amodei 2020 arXiv 2005.14165

    [8]

    Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, Denny Zhou. 2022 arXiv 2201.11903

    [9]

    o1模型OpenAI o1 Hub|OpenAI

    [10]

    An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Zeyu Cui, Zhenru Zhang, Zhihao Fan 2024 arXiv 2407.10671

    [11]

    Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Jingyu Sun, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu, Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, Zihan Wang. 2024 arXiv 2406.12793

    [12]

    Gemini Gemini

    [13]

    Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, Zheng Liu 2024 arXiv 2402.03216

    [14]

    Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela. 2000 arXiv 2005.11401

    [15]

    吴思远, 王宇琦, 肖睿娟, 陈立泉, 2020物理学报, 69(22): 226104

    [16]

    离子输运数据库http://e01.iphy.ac.cn/bmd

    [17]

    Xiao R J, Li H, Chen L Q 2015 Sci. Rep. 514227

    [18]

    He B, Chi S, Ye A J, Mi P H, Zhang L W, Pu B W, Zou Z Y, Ran Y B, Zhao Q, Wang D, Zhang W Q, Zhao J T, Adams S, Avdeev M, Shi S 2020 Sci. Data 7151

    [19]

    Fangling Yang, Egon Campos dos Santos, Xue Jia, Ryuhei Sato, Kazuaki Kisu, Yusuke Hashimoto, Shin-ichi Orimo, Hao Li 2024 Nano Materials Science 6256-262

    [20]

    Cameron J. Hargreaves, Michael W. Gaultois, Luke M. Daniels, Emma J. Watts, Vitaliy A. Kurlin, Michael Moran, Yun Dang, Rhun Morris, Alexandra Morscher, Kate Thompson, Matthew A. Wright, Beluvalli-Eshwarappa Prasad, Frédéric Blanc, Chris M. Collins, Catriona A. Crawford, Benjamin B. Duff, Jae Evans, Jacinthe Gamon, Guopeng Han, Bernhard T. Leube, Hongjun Niu, Arnaud J. Perez, Aris Robinson, Oliver Rogan, Paul M. Sharp, Elvis Shoko, Manel Sonni, William J. Thomas, Andrij Vasylenko, Lu Wang, Matthew J. Rosseinsky & Matthew S. Dyer 2023 npj Comput Mater 9, 9

    [21]

    无机固态电解质材料数据库https://cmpdc.iphy.ac.cn/literature/SSE.html

    [22]

    Siyuan Wu(吴思远), Tiannian Zhu(朱天念), Sijia Tu(涂思佳), Ruijuan Xiao(肖睿娟), Jie Yuan(袁洁), Quansheng Wu(吴泉生), Hong Li(李泓), and Hongming Weng(翁红明) Literature classification and its applications in condensed matter physics and materials science by natural language processing 2024 Chin. Phys. B 33050704

    [23]

    Yong Zhang, Meng-Xiang Xie, Wu Zhang, Jia-Li Yan, Gang-Qin Shao 2020 Materials Letters 266127508

    [24]

    Yuxiang Li, Shugo Daikuhara, Satoshi Hori, Xueying Sun, Kota Suzuki, Masaaki Hirayama, Ryoji Kanno 2020 Chemistry of Materials 328860-8867

    [25]

    Ruochen Xu, Zhang Wu, Shenzhao Zhang, Xiuli Wang, Yan Xia, Xinhui Xia, Xiaohua Huang, Jiangping Tu 2017 Chemistry – A European Journal 2313950-13956

    [26]

    Xuelei Li, Wenxiu Peng, Rongzheng Tian, Dawei Song, Zhenyu Wang, Hongzhou Zhang, Lingyun Zhu, Lianqi Zhang 2020 Electrochimica Acta 363137185

    [27]

    Fan Wu, William Fitzhugh, Luhan Ye, Jiaxin Ning, Xin Li 2018 Nature Communications 94037

    [28]

    MatElab平台https://in.iphy.ac.cn/eln/#/recusertype

  • [1] ZENG Jiaolong, GAO Cheng, YUAN Jianmin. Database of radiation opacity of low-density aluminum, iron and gold plasmas. Acta Physica Sinica, doi: 10.7498/aps.74.20250301
    [2] BAI Jingyi, HUANG Qiaogao, GAO Pengcheng, WEN Xin, CHU Yong. Intelligent prediction of manta ray flow field based on a denoising probabilistic diffusion model. Acta Physica Sinica, doi: 10.7498/aps.74.20241499
    [3] XU Jiaxin, XU Lechen, LIU Jingyang, DING Huajian, WANG Qin. Research progress of artificial intelligence empowered quantum communication and quantum sensing systems. Acta Physica Sinica, doi: 10.7498/aps.74.20250322
    [4] Li Jingyu, Yang Jing, Wang Hao, Li Xuepeng, Ning Zihao, Gao Hongwei, Wang Xiaojun, Zhao Tianzhuo, Fan Zhongwei, Xv Zuyan. Wide Stable Zone Large Mode Area Nanosecond Laser Generation Based on Artificial Intelligence Algorithms. Acta Physica Sinica, doi: 10.7498/aps.74.20250519
    [5] Yang Yuan, Hu Nai-Fang, Jin Yong-Cheng, Ma Jun, Cui Guang-Lei. Research advance of lithium-rich cathode materials in all-solid-state lithium batteries. Acta Physica Sinica, doi: 10.7498/aps.72.20230258
    [6] Pan Xin-Yu, Bi Xiao-Xue, Dong Zheng, Geng Zhi, Xu Han, Zhang Yi, Dong Yu-Hui, Zhang Cheng-Long. Review of development for ptychography algorithm. Acta Physica Sinica, doi: 10.7498/aps.72.20221889
    [7] Geng Xiao-Bin, Li Ding-Gen, Xu Bo. Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery. Acta Physica Sinica, doi: 10.7498/aps.72.20230824
    [8] Hou Chen-Yang, Meng Fan-Chao, Zhao Yi-Ming, Ding Jin-Min, Zhao Xiao-Ting, Liu Hong-Wei, Wang Xin, Lou Shu-Qin, Sheng Xin-Zhi, Liang Sheng. “Machine micro/nano optics scientist”: Application and development of artificial intelligence in micro/nano optical design. Acta Physica Sinica, doi: 10.7498/aps.72.20230208
    [9] Shen Pei-Xin, Jiang Wen-Jie, Li Wei-Kang, Lu Zhi-De, Deng Dong-Ling. Adversarial learning in quantum artificial intelligence. Acta Physica Sinica, doi: 10.7498/aps.70.20210789
    [10] . Acta Physica Sinica, doi: 10.7498/aps.69.220101
    [11] Wu Si-Yuan, Wang Yu-Qi, Xiao Rui-Juan, Chen Li-Quan. Development and application of battery materials database. Acta Physica Sinica, doi: 10.7498/aps.69.20201542
    [12] Wang Chen-Yang, Duan Qian-Qian, Zhou Kai, Yao Jing, Su Min, Fu Yi-Chao, Ji Jun-Yang, Hong Xin, Liu Xue-Qin, Wang Zhi-Yong. A hybrid model for photovoltaic power prediction of both convolutional and long short-term memory neural networks optimized by genetic algorithm. Acta Physica Sinica, doi: 10.7498/aps.69.20191935
    [13] Peng Lin-Feng, Zeng Zi-Qi, Sun Yu-Long, Jia Huan-Huan, Xie Jia. Facile synthesis and electrochemical properties of Na-rich anti-perovskite solid electrolytes. Acta Physica Sinica, doi: 10.7498/aps.69.20201227
    [14] Liu Yu-Long, Xin Ming-Yang, Cong Li-Na, Xie Hai-Ming. Recent research progress of interface for polyethylene oxide based solid state battery. Acta Physica Sinica, doi: 10.7498/aps.69.20201588
    [15] Yu Qi-Peng, Liu Qi, Wang Zi-Qiang, Li Bao-Hua. Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies. Acta Physica Sinica, doi: 10.7498/aps.69.20201218
    [16] Cao Wen-Zhuo, Li Quan, Wang Sheng-Bin, Li Wen-Jun, Li Hong. Mechanism, strategies, and characterizations of Li plating in solid state batteries. Acta Physica Sinica, doi: 10.7498/aps.69.20201293
    [17] Zhao Ning, Mu Shuang, Guo Xiang-Xin. Physical issues in solid garnet batteries. Acta Physica Sinica, doi: 10.7498/aps.69.20201191
    [18] Zhang Qiao-Bao, Gong Zheng-Liang, Yang Yong. Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Physica Sinica, doi: 10.7498/aps.69.20201581
    [19] Su Jia-Hang, Wu Jun, Hu Si-De. Identification of spent nuclear fuel with multivariate analysis based on database. Acta Physica Sinica, doi: 10.7498/aps.68.20190107
    [20] Guo Li, Liang Lin-Yun, Chen Chong, Wang Ming-Tai, Kong Ming-Guang, Wang Kong-Jia. Electron transport in solid-state dye-sensitized solar cells based on polyaniline. Acta Physica Sinica, doi: 10.7498/aps.56.4270
Metrics
  • Abstract views:  20
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  23 June 2025

/

返回文章
返回