-
Two-dimensional transition metal borides (MBene), as emerging electrode materials for metal-ion batteries, exhibit diverse phase structures including MB, M2B, and M2B2. However, current research remains insufficient in exploring the M2B-phase system. This study focuses on the design of M2B-phase MBenes, pioneering the construction of two novel sulfur-functionalized materials, Zr2BS2 and Nb2BS2, while systematically elucidating their performance mechanisms as anode materials for lithium/sodium-ion batteries. Through first-principles calculations, both Zr2BS2 and Nb2BS2 demonstrate exceptional structural stability and superior electrochemical properties in sodium-ion battery applications. Specifically, they exhibit high theoretical specific capacities (624 mA h g-1 and 616 mA h g-1) and remarkably low diffusion energy barriers for Na⁺ (0.131 eV and 0.088 eV). Moreover, their low open-circuit voltages (0.38 V and 0.21 V) effectively suppress dendrite growth, achieving an optimal balance between high capacity and operational safety. This work not only establishes a theoretical framework for MBene-based anode design but also provides critical insights into the correlation between surface functionalization, structural stability, and ion transport kinetics. The findings offer valuable guidance for developing other two-dimensional materials and non-layered systems, while contributing to mechanistic understanding of charge-discharge processes in transition metal dichalcogenide TMD-based lithium/sodium-ion batteries.
-
[1] Dusastre V, Martiradonna L 2017Nat. Mater. 16 15
[2] Tian J J, Xue Q F, Yao Q, Li N, Christoph J, Brabec, Hin L Y 2020Adv. Energy Mater. 10 2000183
[3] Akkerman Q A, Gandini M, Stasio F D, Rastogi P, Palazon F, Bertoni G, Ball J M, Prato M, Petrozza A, Manna L 2017Nat. Energy 2 16194
[4] Barre A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D 2013J. Power Sources 241 680
[5] Wang Y X, Liu B, Li Q Y, Cartmell S, Ferrara S, Deng Z Q, Xiao J 2015J. Power Sources 286 330
[6] Jin L, Shen C, Shellikeri A, Wu Q, Zheng J, Andrei P, Zhang J G, Zheng J P 2020Energy Environ. Sci. 13 2341
[7] Noori A, El-Kady M F, Rahmanifar M S, Kaner R B, Mousavi M F 2019Chem. Soc. Rev. 48 1272
[8] Soltani M, Beheshti S H 2021J. Energy Storage 34 102019
[9] Choi N S, Chen Z, Freunberger S A, Ji X, Sun Y K, Amine K, Yushin G, Nazar L F, Cho J, Bruce P G 2012Angew. Chem. Int. Ed. 51 9994
[10] Fang Y, Xiao L, Chen Z, Ai X, Cao Y, Yang H 2018Electrochem. Energy Rev. 1 294
[11] Li F, Tang Q 2019ACS Appl. Nano Mater. 2 7220
[12] Zhang B, Zhou J, Guo Z, Peng Q, Sun Z 2020Appl. Surf. Sci. 500 144248
[13] Liu X, Ge X, Dong Y, Fu K, Meng F, Si R, Zhang M, Xu X 2020Mater. Chem. Phys. 253 123334
[14] Zhang B, Zhou J, Sun Z 2022J. Mater. Chem. A 10 15865
[15] Guo Z, Zhou J, Sun Z 2017J. Mater. Chem. A 5 23530
[16] Zha X H, Xu P, Huang Q, Du S, Zhang R Q 2020Nanoscale Adv. 2347
[17] Ma N, Wang T, Li N, Li Y, Fan J 2022Appl. Surf. Sci. 571 151275
[18] Jia J, Li B, Duan S, Cui Z, Gao H 2019Nanoscale 11 20307
[19] Zhou J, Palisaitis J, Halim J, Dahlqvist M, Tao Q, Persson I, Hultman L, Persson P OÅ, Rosen J 2021Science 373 801
[20] Khaledialidusti R, Khazaei M, Wang V, Miao N, Si C, Wang J, Wang J 2021J. Phys.:Condens. Matter 33 155503
[21] Liang B, Ma N, Wang Y, Wang T, Fan J 2022Appl. Surf. Sci. 599 153927
[22] Mehta V, Saini H S, Srivastava S, Kashyap M K, Tankeshwar K 2019J. Phys. Chem. C 123 25052
[23] Li D, Chen X, Xiang P, Du H, Xiao B 2020Appl. Surf. Sci. 501 144221
[24] Wang Y, Ma N, Liang B, Fan J 2022Appl. Surf. Sci. 596 153619
[25] Kresse G, Furthmüller J 1996Phys. Rev. B 54 11169
[26] Kresse G, Furthmüller J 1996Comput. Mater. Sci. 6 15
[27] Blöchl P E 1994Phys. Rev. B 50 17953
[28] Kresse G, Joubert D 1999Phys. Rev. B 59 1758
[29] Perdew J P, Ernzerhof M, Burke K 1996J. Chem. Phys. 105 9982
[30] Perdew J P, Burke K, Ernzerhof M 1996Phys. Rev. Lett. 77 3865
[31] Grimme S 2006J. Comput. Chem. 27 1787
[32] Gonze X, Lee C 1997Phys. Rev. B 55 10355
[33] Togo A, Tanaka I 2015Scr. Mater. 108 1
[34] Paier J, Hirschl R, Marsman M, Kresse G 2005J. Chem. Phys. 122 234102
[35] Yuan X, Zhang Z, He Y, Zhao S, Zhou N 2022J. Phys. Chem. C 126 91
[36] Yan B, Lu C, Zhang P, Chen J, He W, Tian W, Zhang W, Sun Z 2020Mater. Today Commun. 22 100713
[37] Chen Z, Huang S, Yuan X, Gan X, Zhou N 2021Appl. Surf. Sci. 544 148861
[38] Singh S, Espejo C, Romero A H 2018Phys. Rev. B 98 155309
[39] Andrew R C, Mapasha R E, Ukpong A M, Chetty N 2012Phys. Rev. B 85 125428
[40] Born M, Huang K 1955Am. J. Phys. 23 474
[41] Shu H B, Li F, Hu C L, Liang P, Cao D, Chen X S 2016Nanoscale 13 2341
[42] Zhang X, Yu Z, Wang S S, Guan S, Yang H Y, Yao Y, Yang S A 2016J. Mater. Chem. A 4 15224
[43] Meng Q, Ma J, Zhang Y, Li Z, Hu A, Kai J J, Fan J 2018J. Mater. Chem. A 6 13652
[44] Meng Q, Ma J, Zhang Y, Li Z, Zhi C, Hu A, Fan J 2018Nanoscale 10 3385
[45] Shukla V, Jena N K, Naqvi S R, Luo W, Ahuja R 2019Nano Energy 58 877
[46] Gao S, Hao J, Zhang X, Li L, Zhang C, Wu L, Ma X, Lu P, Liu G 2021Comput. Mater. Sci. 200 110776
[47] Urban A, Seo D H, Ceder G 2016npj Comput. Mater. 2 16002
[48] Aydinol M K, Kohan A F, Ceder G, Cho K, Joannopoulos J 1997Phys. Rev. B 56 1354
[49] Eames C, Islam M S 2014J. Am. Chem. Soc. 136 16270
[50] Yang E, Ji H, Kim J, Kim H, Jung Y 2015Phys. Chem. Chem. Phys. 17 5000
Metrics
- Abstract views: 38
- PDF Downloads: 0
- Cited By: 0