Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electromagnetic pulse damage effects on gallium arsenide solar cells

HUANG Zekang GE Xingjun ZHANG Yang ZHANG Peng ZHANG Zehai ZHOU Yang LV Jiahua

Citation:

Electromagnetic pulse damage effects on gallium arsenide solar cells

HUANG Zekang, GE Xingjun, ZHANG Yang, ZHANG Peng, ZHANG Zehai, ZHOU Yang, LV Jiahua
cstr: 32037.14.aps.74.20250469
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The technology of space-based wireless power transfer presents a potential solution for supplying energy to spacecraft. However, this method transmits energy through high-power electromagnetic pulses, which may pose a potential threat to gallium arsenide (GaAs) solar cells. Currently, the damage mechanisms affecting solar cells in these conditions remain unclear. To solve this issue, the thermo-electrical coupled damage mechanism of single-junction GaAs solar cells is investigated using a comprehensive multiphysics simulation model in this work. The damage characteristics of the solar cells under varying voltage and frequency inputs are simulated and analyzed. Furthermore, the relationship between burnout time and both input voltage and frequency are investigated, and the differences in damage mechanisms observed at different frequencies are elucidated. The results indicate that due to high current density and contact resistance, burnout mainly occurs at the cathode electrode contacts. Additionally, the PN junction and the anode contact experience significant temperature elevations, which is more likely to affect the cell performance. By deepening our understanding of how high-power electromagnetic pulses damage space solar cells, this study will provide support for designing electromagnetic protection systems for spacecraft power architectures.
      Corresponding author: GE Xingjun, gexingjun230230@aliyun.com ; ZHANG Yang, 16103271g@connect.polyu.hk
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2022M723913) and the Natural Science Foundation of Hunan Province, China (Grant No. 2023JJ40675).
    [1]

    刘岩, 程伟, 孙犇, 王玮 2016 空间电子技术 13 44Google Scholar

    Liu Y, Cheng W, Sun B, Wang W 2016 Space Electron. Techn. 13 44Google Scholar

    [2]

    Yang Y, Zhang Y Q, Duan B Y, Wang D X, Li X 2016 Acta Astronaut. 121 51Google Scholar

    [3]

    李军, 董士伟, 李洋, 王颖, 陈伟伟 2021 空间电子技术 15 8Google Scholar

    Li J, Dong S W, Li Y, Wang Y, Chen W W 2021 Space Electron. Techn. 15 8Google Scholar

    [4]

    颜媛媛 2019 硕士学位论文 (南京: 南京航空航天大学)

    Yan Y Y 2019 M. S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics

    [5]

    Barthel A, Sato S, Sayre L, Li J, Nakamura T, Ohshima T, Imaizumi M, Hirst L C 2024 J. Appl. Phys. 135 224505Google Scholar

    [6]

    Rahman T, Mansur A, Hossain L M, Rahman M, Ashique R, Houran M, Elavarasan R, Hossain E 2023 Energies 16 3706Google Scholar

    [7]

    居培凯 2017 硕士学位论文 (南京: 南京理工大学)

    Ju P K 2017 M. S. Thesis (Nanjing: Nanjing University of Science and Technology

    [8]

    王瀚翔 2022 硕士学位论文 (西安: 西安电子科技大学)

    Wang H X 2022 M. S. Thesis (Xian: Xidian University

    [9]

    Wang H X, Chai C C, Liu Y Q, Wu H, Zhang W, Li F X, Yang Y T 2021 Ieice Electron. Expr. 18 20210020Google Scholar

    [10]

    孟祥瑞 2023 硕士学位论文 (西安: 西安电子科技大学)

    Meng X Y 2023 M. S. Thesis (Xian: Xidian University

    [11]

    Meng X R, Chai C, Li F, Sun Y, Yang Y 2022 J. Semicond. 43 112701Google Scholar

    [12]

    樊晖煜 2022 硕士学位论文 (西安: 西安电子科技大学)

    Fan Y H 2022 M. S. Thesis (Xian: Xidian University

    [13]

    张好彬 2024 硕士学位论文 (西安: 西安电子科技大学)

    Zhang H B 2024 M. S. Thesis (Xian: Xidian University

    [14]

    何杰, 夏建白 主编 2017 半导体科学与技术(第2版) (北京: 科学出版社) 第110页

    He J, Xia J B (eds.) 2017 Semiconductor Science and Technology (2nd Ed.) (Beijing: Science Press) p110

    [15]

    刘恩科, 朱秉升, 罗晋生编 2017 半导体物理学(第7版) (北京: 电子工业出版社) 第712页

    Liu E K, Zhu B S, Luo J S 2017 Semiconductor Physics (7th Ed.) (Beijing: Publishing House of Electronics Industry) p712

    [16]

    Ürmös A, Farkas Z, Dobos L, Nagy S, Nemcsics Á 2018 Acta Polytech. Hung. 15 99Google Scholar

    [17]

    陈信佑 2012 博士学位论文 (桃园: 中原大学)

    Chen X Y 2012 Ph. D. Dissertation (Taoyuan: Chung Yuan Christian University

    [18]

    张春福, 张进成, 马晓华, 冯倩编 2015 半导体光伏器件 (西安: 西安电子科技大学出版社) 第102页

    Zhang C F, Zhang J C, Ma X H, Feng Q 2015 Semiconductor Photovoltaic Devices (Xian: Xidian University Press) p102

    [19]

    SPS: Solar Power Satellite, Sasaki Susumu https://spacedream. sakura.ne.jp/SPS20.pdf [2024-7]

    [20]

    陶文铨 2019 传热学(第五版) (北京: 高等教育出版社) 第118页

    Tao W Q 2019 Heat Transfer (5th Ed.) (Beijing: Higher Education Press) p118

    [21]

    Wunsch D C, Bell R R 1968 IEEE Trans. Nucl. Sci. 15 244Google Scholar

  • 图 1  仿真流程示意图

    Figure 1.  Schematic diagram of the simulation process.

    图 2  单结砷化镓结构模型图

    Figure 2.  Single-junction GaAs solar cell structure model.

    图 3  幅值为80 V正弦波输入后, 电池温度分布、最大温度与总电流变化图

    Figure 3.  Temperature distribution, maximum temperature, and total current under 80 V sine wave injection.

    图 4  电池烧毁时刻的温度分布

    Figure 4.  Temperature distribution of solar cell at the moment of burnout.

    图 5  温升过程中的电池截面物理量变化过程 (a) 温度; (b) 电势; (c) 电导率; (d) 电场强度

    Figure 5.  Changes in physical quantities of the cell cross-section during the temperature rise process: (a) Temperature; (b) electric potential; (c) conductivity; (d) electric field strength.

    图 6  不同电压下的电流、最大温度随时间变化的曲线对比 (a) 电流曲线; (b) 最大温度曲线

    Figure 6.  Comparison of current and maximum temperature changes over time at different voltages: (a) Current curves; (b) maximum temperature curves.

    图 7  注入50 V正弦波时, X = 0.1 μm截线处的电导率变化

    Figure 7.  Dynamics of conductivity along the cutline at X = 0.1 μm under 50 V sine wave injection.

    图 8  不同电压下烧毁时刻的温度分布对比 (a) 50 V; (b) 100 V; (c) 150 V; (d) 200 V

    Figure 8.  Temperature distribution at the moment of burnout under variable voltages: (a) 50 V; (b) 100 V; (c) 150 V; (d) 200 V.

    图 9  弛豫时间与热传导距离的关系

    Figure 9.  Relationship between relaxation time and heat conduction distance.

    图 10  不同频率下的电流与最大温升曲线 (a) 电流曲线; (b) 最大温度曲线

    Figure 10.  Comparison of current and maximum temperature changes over time under varied frequency conditions: (a) Current curves; (b) maximum temperature curves.

    图 11  烧毁时长与微波参数的关系 (a) 电压; (b) 频率

    Figure 11.  Relationship between burnout duration and microwave parameters: (a) Voltage; (b) frequency.

    图 12  不同频率下的烧毁时刻温度分布 (a) 0.10 GHz; (b) 0.40 GHz; (c) 1.58 GHz; (d) 6.31 GHz

    Figure 12.  Temperature distribution at the moment of burnout under variable frequencies: (a) 0.10 GHz; (b) 0.40 GHz; (c) 1.58 GHz; (d) 6.31 GHz.

    表 1  仿真模型中的太阳电池基本结构参数设置

    Table 1.  Structural parameters of the solar cell in the simulation model.

    结构参数设置结构参数设置
    帽层1 μm, 5×1018 cm–3 n型GaAs基极1.5 μm, 1×1017 cm–3 p型GaAs
    前表面场0.03 μm, 7×1018 cm–3 n型GaInP背表面场0.1 μm, 2×1018 cm–3 p型GaInP
    发射极0.1 μm, 2×1018 cm–3 n型GaInP衬底0.5 μm, 1×1017 cm–3 p型GaAs
    DownLoad: CSV
  • [1]

    刘岩, 程伟, 孙犇, 王玮 2016 空间电子技术 13 44Google Scholar

    Liu Y, Cheng W, Sun B, Wang W 2016 Space Electron. Techn. 13 44Google Scholar

    [2]

    Yang Y, Zhang Y Q, Duan B Y, Wang D X, Li X 2016 Acta Astronaut. 121 51Google Scholar

    [3]

    李军, 董士伟, 李洋, 王颖, 陈伟伟 2021 空间电子技术 15 8Google Scholar

    Li J, Dong S W, Li Y, Wang Y, Chen W W 2021 Space Electron. Techn. 15 8Google Scholar

    [4]

    颜媛媛 2019 硕士学位论文 (南京: 南京航空航天大学)

    Yan Y Y 2019 M. S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics

    [5]

    Barthel A, Sato S, Sayre L, Li J, Nakamura T, Ohshima T, Imaizumi M, Hirst L C 2024 J. Appl. Phys. 135 224505Google Scholar

    [6]

    Rahman T, Mansur A, Hossain L M, Rahman M, Ashique R, Houran M, Elavarasan R, Hossain E 2023 Energies 16 3706Google Scholar

    [7]

    居培凯 2017 硕士学位论文 (南京: 南京理工大学)

    Ju P K 2017 M. S. Thesis (Nanjing: Nanjing University of Science and Technology

    [8]

    王瀚翔 2022 硕士学位论文 (西安: 西安电子科技大学)

    Wang H X 2022 M. S. Thesis (Xian: Xidian University

    [9]

    Wang H X, Chai C C, Liu Y Q, Wu H, Zhang W, Li F X, Yang Y T 2021 Ieice Electron. Expr. 18 20210020Google Scholar

    [10]

    孟祥瑞 2023 硕士学位论文 (西安: 西安电子科技大学)

    Meng X Y 2023 M. S. Thesis (Xian: Xidian University

    [11]

    Meng X R, Chai C, Li F, Sun Y, Yang Y 2022 J. Semicond. 43 112701Google Scholar

    [12]

    樊晖煜 2022 硕士学位论文 (西安: 西安电子科技大学)

    Fan Y H 2022 M. S. Thesis (Xian: Xidian University

    [13]

    张好彬 2024 硕士学位论文 (西安: 西安电子科技大学)

    Zhang H B 2024 M. S. Thesis (Xian: Xidian University

    [14]

    何杰, 夏建白 主编 2017 半导体科学与技术(第2版) (北京: 科学出版社) 第110页

    He J, Xia J B (eds.) 2017 Semiconductor Science and Technology (2nd Ed.) (Beijing: Science Press) p110

    [15]

    刘恩科, 朱秉升, 罗晋生编 2017 半导体物理学(第7版) (北京: 电子工业出版社) 第712页

    Liu E K, Zhu B S, Luo J S 2017 Semiconductor Physics (7th Ed.) (Beijing: Publishing House of Electronics Industry) p712

    [16]

    Ürmös A, Farkas Z, Dobos L, Nagy S, Nemcsics Á 2018 Acta Polytech. Hung. 15 99Google Scholar

    [17]

    陈信佑 2012 博士学位论文 (桃园: 中原大学)

    Chen X Y 2012 Ph. D. Dissertation (Taoyuan: Chung Yuan Christian University

    [18]

    张春福, 张进成, 马晓华, 冯倩编 2015 半导体光伏器件 (西安: 西安电子科技大学出版社) 第102页

    Zhang C F, Zhang J C, Ma X H, Feng Q 2015 Semiconductor Photovoltaic Devices (Xian: Xidian University Press) p102

    [19]

    SPS: Solar Power Satellite, Sasaki Susumu https://spacedream. sakura.ne.jp/SPS20.pdf [2024-7]

    [20]

    陶文铨 2019 传热学(第五版) (北京: 高等教育出版社) 第118页

    Tao W Q 2019 Heat Transfer (5th Ed.) (Beijing: Higher Education Press) p118

    [21]

    Wunsch D C, Bell R R 1968 IEEE Trans. Nucl. Sci. 15 244Google Scholar

  • [1] Zhong Ting-Ting, Hao Hui-Ying. Component control and additive engineering of all-inorganic perovskite films and carbon-based solar cells under ambient air environment. Acta Physica Sinica, 2024, 73(23): 238101. doi: 10.7498/aps.73.20241439
    [2] Juan Ting, Xing Jia-He, Zeng Fan-Cong, Zheng Xin, Xu Lin. Performance of perovskite solar cells based on SnO2:DPEPO hybrid electron transport layer. Acta Physica Sinica, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [3] Liu Heng, Li Ye, Du Meng-Chao, Qiu Peng, He Ying-Feng, Song Yi-Meng, Wei Hui-Yun, Zhu Xiao-Li, Tian Feng, Peng Ming-Zeng, Zheng Xin-He. Atomic layer deposition of AlGaN alloy and its application in quantum dot sensitized solar cells. Acta Physica Sinica, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [4] Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning. Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. Acta Physica Sinica, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [5] Wang Ji-Ming, Chen Ke, Xie Wei-Guang, Shi Ting-Ting, Liu Peng-Yi, Zheng Yi-Fan, Zhu Rui. Research progress of solution processed all-inorganic perovskite solar cell. Acta Physica Sinica, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [6] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [7] Xia Jun-Min, Liang Chao, Xing Gui-Chuan. Inkjet printed perovskite solar cells: progress and prospects. Acta Physica Sinica, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [8] Xi Xiao-Wen, Chai Chang-Chun, Liu Yang, Yang Yin-Tang, Fan Qing-Yang. Influence of the external condition on the damage process of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse. Acta Physica Sinica, 2017, 66(7): 078401. doi: 10.7498/aps.66.078401
    [9] Xia Xiang, Liu Xi-Zhe. Effects of CH3NH3I on fabricating CH3NH3PbI(3-x)Clx perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [10] Zhang Dan-Fei, Zheng Ling-Ling, Ma Ying-Zhuang, Wang Shu-Feng, Bian Zu-Qiang, Huang Chun-Hui, Gong Qi-Huang, Xiao Li-Xin. Factors influencing the stability of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [11] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [12] Ding Mei-Bin, Lou Chao-Gang, Wang Qi-Long, Sun Qiang. Influence of quantum wells on the quantum efficiency of GaAs solar cells. Acta Physica Sinica, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [13] Ke Shao-Ying, Wang Chong, Pan Tao, He Peng, Yang Jie, Yang Yu. Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile. Acta Physica Sinica, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [14] Wang Hai-Xiao, Zheng Xin-He, Wu Yuan-Yuan, Gan Xing-Yuan, Wang Nai-Ming, Yang Hui. Well layer design for 1eV absorption band edge of GaInAs/GaNAs super-lattice solar cell. Acta Physica Sinica, 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [15] Dan Jia-Kun, Ren Xiao-Dong, Huang Xian-Bin, Zhang Si-Qun, Zhou Shao-Tong, Duan Shu-Chao, Ouyang Kai, Cai Hong-Chun, Wei Bing, Ji Ce, He An, Xia Ming-He, Feng Shu-Ping, Wang Meng, Xie Wei-Ping. Electromagnetic pulse emission produced by Z pinch implosions. Acta Physica Sinica, 2013, 62(24): 245201. doi: 10.7498/aps.62.245201
    [16] Li Xiao-Juan, Wei Shang-Jiang, Lü Wen-Hui, Wu Dan, Li Ya-Jun, Zhou Wen-Zheng. A new approach to fabricating silicon nanowire/poly(3, 4-ethylenedioxythiophene) hybrid heterojunction solar cells. Acta Physica Sinica, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [17] Tang Xin-Xin, Luo Wen-Yun, Wang Chao-Zhuang, He Xin-Fu, Zha Yuan-Zi, Fan Sheng, Huang Xiao-Long, Wang Chuan-Shan. Non-ionizing energy loss of low energy proton in semiconductor materials Si and GaAs. Acta Physica Sinica, 2008, 57(2): 1266-1270. doi: 10.7498/aps.57.1266
    [18] Wang Liang, Cao Jin-Xiang, Wang Yan, Niu Tian-Ye, Wang Ge, Zhu Ying. Experimental study of propagation time of electromagnetic pulse through laboratory plasma. Acta Physica Sinica, 2007, 56(3): 1429-1433. doi: 10.7498/aps.56.1429
    [19] Hao Hui-Ying, Kong Guang-Lin, Zeng Xiang-Bo, Xu Ying, Diao Hong-Wei, Liao Xian-Bo. Transition films from amporphous to microcrystalline silicon and solar cells. Acta Physica Sinica, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
    [20] Chen Ming-Bo, Cui Rong-Qiang, Wang Liang-Xing, Zhang Zhong-Wei, Lu Jian-Feng, Chi Wei-Ying. p-n GaInP2/GaAs tandem solar cells*. Acta Physica Sinica, 2004, 53(11): 3632-3636. doi: 10.7498/aps.53.3632
Metrics
  • Abstract views:  478
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  10 April 2025
  • Accepted Date:  09 May 2025
  • Available Online:  11 June 2025
  • Published Online:  05 August 2025
  • /

    返回文章
    返回