Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electromagnetic pulse emission produced by Z pinch implosions

Dan Jia-Kun Ren Xiao-Dong Huang Xian-Bin Zhang Si-Qun Zhou Shao-Tong Duan Shu-Chao Ouyang Kai Cai Hong-Chun Wei Bing Ji Ce He An Xia Ming-He Feng Shu-Ping Wang Meng Xie Wei-Ping

Citation:

Electromagnetic pulse emission produced by Z pinch implosions

Dan Jia-Kun, Ren Xiao-Dong, Huang Xian-Bin, Zhang Si-Qun, Zhou Shao-Tong, Duan Shu-Chao, Ouyang Kai, Cai Hong-Chun, Wei Bing, Ji Ce, He An, Xia Ming-He, Feng Shu-Ping, Wang Meng, Xie Wei-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we represent the radiation characteristics of electromagnetic pulse generated by Z pinch implosion. Magnetic energy which couples with motions of metallic wire arrays or solid liners driven by Z pinch can radiate away. Theoretical results indicate that the radiation power of electromagnetic pulse is determined by both load current and implosion trace. Experiments are carried on primary test stand facility at Institute of Fluid Physics where a current rising to 7 MA in (10%–90%) 65 ns is used to drive a wire array Z pinch. The measured load current and implosion trace show that the Z pinch can deliver about 1 GW, 10 ns full width, 20–70 MHz central frequency, broadband electromagnetic pulse with an energy conversion efficiency of 10-7. Parameters of electromagnetic pulse are much smaller than those of X-ray with a power of 50 TW and an energy of 0.5 MJ. In the approximation of weak relativistic case, the power of electromagnetic pulse which is proportional to sixth power of load current, dramatically increases with current increasing. Soft X-ray radiation is an important channel for dissipating a considerable fraction of energy provided by facility. The results presented here demonstrate that electromagnetic pulse emission in the case of higher load current can cause significant damage to diagnostic devices. Moreover, intense electromagnetic pulse produced by this method may have many potential applications.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11135007), the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2013B0102003), and the Development Foundation of Institute of Fluid Physics, China (Grant No. SFZ20110402).
    [1]

    Bailey J E, Chandler G A, Slutz S A, Golovkin I, Lake P W, MacFarlane J J, Mancini R C, Burris-Mog T J, Cooper G, Leeper R J, Mehlhorn T A, Moore T C, Nash T J, Nielsen D S, Ruiz C L, Schroen D G, Varnum W A 2004 Phys. Rev. Lett. 92 085002

    [2]

    Ruiz C L, Cooper G W, Slutz S A, Bailey J E, Chandler G A, Nash T J, Mehlhorn T A, Leeper R J, Fehl D, Nelson A J, Franklin J, Ziegler L 2004 Phys. Rev. Lett. 93 015001

    [3]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [4]

    Amplefor D J, Jennings C A, Hall G N, Lebedev S V, Bland S N, Bott S C, Suzuki-Vidal F, Palmer J B A, Chittenden J P, Cuneo M E, Frank A, Blackman E G, Ciardi A 2010 Phys. Plasmas 17 056315

    [5]

    Matzen M K 1997 Phys. Plasmas 5 1519

    [6]

    Bailey J E, Rochau G A, Mancini R C, Lglesias C A, MacFarlane J J, Golovkin I E, Blancard C, Cosse P, Faussurier G 2009 Phys. Plasmas 16 058101

    [7]

    Spielman R B, Deeney C, Chandler G A, Douglas M R, Fehl D L, Matzen M K, McDaniel D H, Nash T J, Porter J L, Sanford T W L, Seamen J F, Stygar W A, Struve K W, Breeze S P, McGurn J S, Torres J A, Zagar D M, Gilliland T L, Jobe D O, McKenney J L, Mock R C, Vargas M, Wagoner T 1998 Phys. Plasmas 5 2105

    [8]

    Deeney C, Douglas M R, Spielman R B, Nash T J, Peterson D L, L’Eplattenier P, Chandler G A, Seamen J F, Struve K W 1998 Phys. Rev. Lett. 81 4883

    [9]

    Martin M R, Lemke R W, McBride R D, Davis J P, Dolan D H, Knudson M D, Cochrane K R, Sinars D B, Smith I C, Savage M, Stygar W A, Killebrew K, Flicker D G, Herrmann M C 2012 Phys. Plasmas 19 056310

    [10]

    Sinars D B, Slutz S A, Herrmann M C, McBride R D, Cuneo M E, Peterson K J, Vesey R A, Nakhleh C, Blue B E, Killebrew K, Schroen D, Tomlinson K, Edens A D, Lopez M R, Smith I C, Shores J, Bigman V, Bennett G R, Atherton B W, Savage M, Stygar W A, Leifeste G T, Porter J L 2010 Phys. Rev. Lett. 105 185001

    [11]

    Huang X B, Yang L B, Li J, Zhou S T, Ren X D, Zhang S Q, Dan J K, Cai H C, Duan S C, Chen G H, Zhang Z W, Ouyang K, Li J, Zhang Z H, Zhou R G, Wang G L 2012 Chin. Phys. B 21 055206

  • [1]

    Bailey J E, Chandler G A, Slutz S A, Golovkin I, Lake P W, MacFarlane J J, Mancini R C, Burris-Mog T J, Cooper G, Leeper R J, Mehlhorn T A, Moore T C, Nash T J, Nielsen D S, Ruiz C L, Schroen D G, Varnum W A 2004 Phys. Rev. Lett. 92 085002

    [2]

    Ruiz C L, Cooper G W, Slutz S A, Bailey J E, Chandler G A, Nash T J, Mehlhorn T A, Leeper R J, Fehl D, Nelson A J, Franklin J, Ziegler L 2004 Phys. Rev. Lett. 93 015001

    [3]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [4]

    Amplefor D J, Jennings C A, Hall G N, Lebedev S V, Bland S N, Bott S C, Suzuki-Vidal F, Palmer J B A, Chittenden J P, Cuneo M E, Frank A, Blackman E G, Ciardi A 2010 Phys. Plasmas 17 056315

    [5]

    Matzen M K 1997 Phys. Plasmas 5 1519

    [6]

    Bailey J E, Rochau G A, Mancini R C, Lglesias C A, MacFarlane J J, Golovkin I E, Blancard C, Cosse P, Faussurier G 2009 Phys. Plasmas 16 058101

    [7]

    Spielman R B, Deeney C, Chandler G A, Douglas M R, Fehl D L, Matzen M K, McDaniel D H, Nash T J, Porter J L, Sanford T W L, Seamen J F, Stygar W A, Struve K W, Breeze S P, McGurn J S, Torres J A, Zagar D M, Gilliland T L, Jobe D O, McKenney J L, Mock R C, Vargas M, Wagoner T 1998 Phys. Plasmas 5 2105

    [8]

    Deeney C, Douglas M R, Spielman R B, Nash T J, Peterson D L, L’Eplattenier P, Chandler G A, Seamen J F, Struve K W 1998 Phys. Rev. Lett. 81 4883

    [9]

    Martin M R, Lemke R W, McBride R D, Davis J P, Dolan D H, Knudson M D, Cochrane K R, Sinars D B, Smith I C, Savage M, Stygar W A, Killebrew K, Flicker D G, Herrmann M C 2012 Phys. Plasmas 19 056310

    [10]

    Sinars D B, Slutz S A, Herrmann M C, McBride R D, Cuneo M E, Peterson K J, Vesey R A, Nakhleh C, Blue B E, Killebrew K, Schroen D, Tomlinson K, Edens A D, Lopez M R, Smith I C, Shores J, Bigman V, Bennett G R, Atherton B W, Savage M, Stygar W A, Leifeste G T, Porter J L 2010 Phys. Rev. Lett. 105 185001

    [11]

    Huang X B, Yang L B, Li J, Zhou S T, Ren X D, Zhang S Q, Dan J K, Cai H C, Duan S C, Chen G H, Zhang Z W, Ouyang K, Li J, Zhang Z H, Zhou R G, Wang G L 2012 Chin. Phys. B 21 055206

  • [1] Xiao De-Long, Dai Zi-Huan, Sun Shun-Kai, Ding Ning, Zhang Yang, Wu Ji-Ming, Yin Li, Shu Xiao-Jian. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion. Acta Physica Sinica, 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [2] Chen Zhong-Wang, Ning Cheng. Simulation of forming process of Z-pinch dynamic hohlraum based on the program MULTI2D-Z. Acta Physica Sinica, 2017, 66(12): 125202. doi: 10.7498/aps.66.125202
    [3] Xi Xiao-Wen, Chai Chang-Chun, Liu Yang, Yang Yin-Tang, Fan Qing-Yang. Influence of the external condition on the damage process of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse. Acta Physica Sinica, 2017, 66(7): 078401. doi: 10.7498/aps.66.078401
    [4] Zhang Yang, Sun Shun-Kai, Ding Ning, Li Zheng-Hong, Shu Xiao-Jian. Basic dynamic and scale study of quasi-spherical Z-pinch implosion. Acta Physica Sinica, 2017, 66(10): 105203. doi: 10.7498/aps.66.105203
    [5] Pu Yu-Dong, Kang Dong-Guo, Huang Tian-Xuan, Gao Yao-Ming, Chen Jia-Bin, Tang Qi, Song Zi-Feng, Peng Xiao-Shi, Chen Bo-Lun, Jiang Wei, Yu Bo, Yan Ji, Jiang Shao-En, Liu Shen-Ye, Yang Jia-Min, Ding Yong-Kun. Experimental studies of low-convergence-ratio implosions. Acta Physica Sinica, 2014, 63(12): 125211. doi: 10.7498/aps.63.125211
    [6] Xue Chuang, Ding Ning, Sun Shun-Kai, Xiao De-Long, Zhang Yang, Huang Jun, Ning Cheng, Shu Xiao-Jian. Full circuit model for coupling pulsed power driver with Z-pinch load. Acta Physica Sinica, 2014, 63(12): 125207. doi: 10.7498/aps.63.125207
    [7] Ye Fan, Xue Fei-Biao, Chu Yan-Yun, Si Fen-Ni, Hu Qing-Yuan, Ning Jia-Min, Zhou Lin, Yang Jian-Lun, Xu Rong-Kun, Li Zheng-Hong, Xu Ze-Ping. Experimental study on current division of nested wire array Z pinches. Acta Physica Sinica, 2013, 62(17): 175203. doi: 10.7498/aps.62.175203
    [8] Guo Fan, Li Yong-Dong, Wang Hong-Guang, Liu Chun-Liang, Hu Yi-Xiang, Zhang Peng-Fei, Ma Meng. Particle-in-cell simulation of outer magnetically insulated transmission line of Z-pinch accelerator. Acta Physica Sinica, 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [9] Jiang Shao-En, Miao Wen-Yong, Kuang Long-Yu. Design of implosion capsules with low convergence ratio driven by radiation on Shenguang Ⅱ and Shenguang Ⅲ prototype laser facilities. Acta Physica Sinica, 2011, 60(5): 055206. doi: 10.7498/aps.60.055206
    [10] Sheng Liang, Qiu Meng-Tong, Hei Dong-Wei, Qiu Ai-Ci, Cong Pei-Tian, Wang Liang-Ping, Wei Fu-Li. Research of implosion dynamics for wire array Z pinch. Acta Physica Sinica, 2011, 60(5): 055205. doi: 10.7498/aps.60.055205
    [11] Sheng Liang, Wang Liang-Ping, Li Yang, Peng Bo-Dong, Zhang Mei, Wu Jian, Wang Pei-Wei, Wei Fu-Li, Yuan Yuan. One-dimensional imaging diagnostics of imploding dynamics for planar wire array Z pinch. Acta Physica Sinica, 2011, 60(10): 105205. doi: 10.7498/aps.60.105205
    [12] Xia Guang-Xin, Zhang Fa-Qiang, Xu Ze-Ping, Xu Rong-Kun, Chen Jin-Chuan, Ning Jia-Min. Radiation characteristics of single wire array Z-pinch implosion. Acta Physica Sinica, 2010, 59(1): 97-102. doi: 10.7498/aps.59.97
    [13] Wu Gang, Qiu Ai-Ci, Lü Min, Kuai Bin, Wang Liang-Ping, Cong Pei-Tian, Qiu Meng-Tong, Lei Tian-Shi, Sun Tie-Ping, Guo Ning, Han Juan-Juan, Zhang Xin-Jun, Huang Tao, Zhang Guo-Wei, Qiao Kai-Lai. Experimental study on K-shell radiation production of aluminum wire array Z-pinch at Qiangguang-I facility. Acta Physica Sinica, 2009, 58(7): 4779-4786. doi: 10.7498/aps.58.4779
    [14] Ning Cheng, Ding Ning, Yang Zhen-Hua. Physical analysis of the certain results in Z-pinch experiments on the “Qiang Guang-I” generator. Acta Physica Sinica, 2007, 56(1): 338-345. doi: 10.7498/aps.56.338
    [15] Wang Liang, Cao Jin-Xiang, Wang Yan, Niu Tian-Ye, Wang Ge, Zhu Ying. Experimental study of propagation time of electromagnetic pulse through laboratory plasma. Acta Physica Sinica, 2007, 56(3): 1429-1433. doi: 10.7498/aps.56.1429
    [16] Ning Cheng, Ding Ning, Liu Quan, Yang Zhen-Hua. Studies of implosion processes of nested tungsten wire-array Z-pinch. Acta Physica Sinica, 2006, 55(7): 3488-3493. doi: 10.7498/aps.55.3488
    [17] Zhang Yang, Ding Ning. The effect of axial flow on the stability in the Z-pinch. Acta Physica Sinica, 2006, 55(5): 2333-2339. doi: 10.7498/aps.55.2333
    [18] Huang Xian-Bin, Yang Li-Bing, Gu Yuan-Chao, Deng Jian-Jun, Zhou Rong-Guo, Zou Jie, Zhou Shao-Tong, Zhang Si-Qun, Chen Guang-Hua, Chang Li-Hua, Li Feng-Ping, Ouyang Kai, Li Jun, Yang Liang, Wang Xiong. Experimental studies of the argon-puff Z-pinch implosion process. Acta Physica Sinica, 2006, 55(4): 1900-1906. doi: 10.7498/aps.55.1900
    [19] Ning Cheng, Li Zheng-Hong, Hua Xin-Sheng, Xu Rong-Kun, Peng Xian-Jue, Xu Ze-Ping, Yang Jian-Lun, Guo Cun, Jiang Shi-Lun, Feng Shu-Ping, Yang Li-Bing, Yan Cheng-Li, Song Feng-Jun, V. P. Smirnov, Yu. G. Kalinin, A. S. Kingsep, A. S. Chernenko, E. V. Grabovsky. Experimental studies of Z-pinches of mixed wire array with aluminum and tungsten. Acta Physica Sinica, 2004, 53(7): 2244-2249. doi: 10.7498/aps.53.2244
    [20] Ning Cheng, Yang Zhen-Hua, Ding Ning. Studies on the mechanism of energy transformation in implosion processes of the Z-pinches. Acta Physica Sinica, 2003, 52(2): 415-420. doi: 10.7498/aps.52.415
Metrics
  • Abstract views:  6431
  • PDF Downloads:  353
  • Cited By: 0
Publishing process
  • Received Date:  06 August 2013
  • Accepted Date:  10 September 2013
  • Published Online:  05 December 2013

/

返回文章
返回