Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stability mechanisms of surface nanobubbles

ZHANG Zhaowei WANG Yanyun FAN Haiming JING Guangyin

Citation:

Stability mechanisms of surface nanobubbles

ZHANG Zhaowei, WANG Yanyun, FAN Haiming, JING Guangyin
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Surface nanobubbles, as nanoscale gaseous domains spontaneously formed at solid-liquid interfaces, exhibit significant potential applications in the biomedical field due to their unique nanoscale size effects, rapid dynamic response characteristics, and favorable biocompatibility. In ultrasonic imaging, surface nanobubbles enhance tissue acoustic contrast by generating strong harmonic scattering signals through nonlinear oscillation under stable cavitation. In antibacterial disinfection applications, the rupture of surface nanobubbles generates a transient high pressure, which synergizes with oxidative damage mediated by reactive oxygen species /hydroxyl radicals to achieve efficient bacterial inactivation. However, in physiological environments, blood flow shear stress and pH fluctuations may induce premature rupture of surface nanobubbles, leading to imaging signal attenuation or risks of non-specific tissue damage, rendering their stability a critical factor determining functional efficacy and biosafety. Notably, the experimental observation of surface nanobubble lifetimes (ranging from hours to days) significantly contradicts the dissolution behavior within microseconds predicted by classical thermodynamic theory, which urgently demands the construction of theoretical models of stability. Although existing theoretical modelshave elucidated the stability mechanisms of surface nanobubbles from multiple perspectives, they arelimited by the lack of intrinsic correlation and inherent limitations, thereby restricting targeted optimization of stability: the contamination barrier model emphasizes that surfactant adsorption inhibits gas diffusion; the dynamic equilibrium model explains that stability arises from the dynamic balance of gas exchange at the gas-liquid interface; the contact line pinning model reveals that substrate heterogeneity constrains the evolution of the three-phase contact line; the local supersaturation model proposes that local high-concentration gas layers formed by substrate adsorption delay dissolution; the interfacial charge enrichment model suggests that electrostatic pressure from the double layer counteracts the Laplace pressure driving dissolution; the internal high-density model assumes that the condensed high-density gas inside reduces diffusion rate and partially counteracts the Laplace pressure. This review systematically summarizes the research progress of the stability mechanisms of surface nanobubbles. It first reviews the discovery history of surface nanobubbles, then deeply analyzes the core mechanisms, intrinsic correlations, and limitations of the aforementioned theoretical models., Finally, it examines the technical challenges faced by surface nanobubbles with the application examples in the biomedical field, and proposes potential optimization strategies and future perspectives based on ther theoretical models of stability.
  • 图 1  (a)表面纳米气泡和体相纳米气泡示意图; (b)两个疏水表面之间测量得到的力与距离曲线的阶梯状特征图[20]; (c)两疏水表面之间相互作用过程示意图[21]

    Figure 1.  (a) Schematic illustration of surface nanobubbles and bulk nanobubbles; (b) force versus distance curve measured between two hydrophobic surfaces, exhibiting discrete stepwise features[20]; (c) schematic representation of the interaction mechanism between two hydrophobic surfaces during approach and separation[21].

    图 2  (a)水中轻敲模式下云母表面纳米气泡的AFM图像, 视野尺寸为1 μm×1 μm[22]; (b)轻敲模式AFM观察到水中疏水化处理的硅片表面形成的纳米气泡[23]; (c)利用RCF技术实现在疏水基底与空气饱和水体系中纳米气泡的成像[32]; (d)利用TIRFM技术在玻璃表面上观察到的纳米气泡图像[33]

    Figure 2.  (a) AFM image of bubbles on mica surface in water in tapping mode, field of view: 1 μm×1 μm[22]; (b) tapping mode AFM image of surface nanobubbles formed on a hydrophobically modified silicon wafer in water[23]; (c) nanobubble imaging on a hydrophobic substrate in an air-saturated aqueous system using RCF microscopy[32]; (d) TIRFM image of nanobubbles observed on a glass substrate[33].

    图 3  (a)污染屏障模型示意图, 表面纳米气泡气-液界面被表面活性剂修饰的污染层覆盖, 阻碍了与周围环境的气体交换; (b)表面纳米气泡具有可渗透的气-液界面, 描绘了空气纳米气泡和周围的CO2饱和水之间的气体交换[37]; (c)动态平衡模型示意图, 三相接触线附近气体的流入用以抵消整个纳米气泡表面的气体流出

    Figure 3.  (a) Schematic diagram of the pollution barrier model, the gas-liquid interface of surface nanobubbles is covered by a surfactant-modified contamination layer, hindering gas exchange with the surrounding environment; (b) schematic diagram of surface nanobubbles with permeable gas-liquid interfaces, depicts gas exchange between air nanobubbles and the surrounding CO2-saturated aqueous medium[37]; (c) schematic diagram of the dynamic equilibrium model, gas influx localized near the three-phase contact line counterbalances gas efflux distributed across the entire nanobubble surface, maintaining bubble stability.

    图 4  (a)接触线钉扎模型示意图, 表面纳米气泡收缩时, 其横向直径L保持不变, 只改变其高度H(即接触角$\theta $); (b)气体浓度分布基底间距$z$的函数关系, 疏水基底(蓝线)与亲水基底(橙线)的对比[13], 已获得授权; (c)基于局部过饱和模型预测的气泡随时间的演化过程[13], 已获得授权; (d)局部过饱和模型示意图: 特征距离λ以内气体的净流入抵消了λ以外气体的流出; (e)界面电荷富集模型示意图, 气-液界面吸附多余的OH形成双电层结构, 产生的静电压强Pe可平衡Laplace压强$\Delta P$

    Figure 4.  (a) Contact line pinning model, during nanobubble contraction, the lateral diameter $L$ remains constant, while the height $H$ (and thus the contact angle $\theta $) varies; (b) gas concentration distribution as a function of substrate separation $z$, comparison between hydrophobic (blue line) and hydrophilic (orange line) substrates[13]; (c) temporal evolution of nanobubbles predicted by the local oversaturation model[13]; (d) schematic of the local oversaturation model, net gas influx within the characteristic distance $\lambda $ counterbalances gas efflux outside $\lambda $, maintaining dynamic equilibrium; (e) interfacial charge enrichment model, excess OH adsorption at the gas-liquid interface forms an electric double layer, where the induced electrostatic pressure Pe balances the Laplace pressure $\Delta P$.

  • [1]

    Lentacker I, De Cock I, Deckers R, De Smedt S C, Moonen C T W 2014 Adv. Drug Delivery Rev. 72 49Google Scholar

    [2]

    Zhou X Y, Guo L, Shi D D, Duan S J, Li J 2019 Nanoscale Res. Lett. 14 24Google Scholar

    [3]

    Yang H L, Cai W B, Xu L, Lv X H, Qiao Y B, Li P, Wu H, Yang Y L, Zhang L, Duan Y Y 2015 Biomaterials 37 279Google Scholar

    [4]

    Rafeeq S, Ovissipour R 2021 Foods 10 2154Google Scholar

    [5]

    Epstein P S, Plesset M S 1950 J. Chem. Phys. 18 1505Google Scholar

    [6]

    Ljunggren S, Eriksson J C 1997 Colloids Surf. A 129 151

    [7]

    Yang J W, Duan J M, Fornasiero D, Ralston J 2003 J. Phys. Chem. B 107 6139Google Scholar

    [8]

    Zhang X H, Quinn A, Ducker W A 2008 Langmuir 24 4756Google Scholar

    [9]

    Batchelor D V, Armistead F J, Ingram N, Peyman S A, McLaughlan J R, Coletta P L, Evans S D 2022 Langmuir 38 13943Google Scholar

    [10]

    Ducker W A 2009 Langmuir 25 8907Google Scholar

    [11]

    Brenner M P, Lohse D 2008 Phys. Rev. Lett. 101 214505Google Scholar

    [12]

    Zhang X H, Chan D Y, Wang D Y, Maeda N 2013 Langmuir 29 1017Google Scholar

    [13]

    Tan B H, An H J, Ohl C D 2018 Phys. Rev. Lett. 120 164502Google Scholar

    [14]

    Chang A S, Niu B, Liu J, Han H R, Zhang Z B, Wang W 2023 Particuology 81 128Google Scholar

    [15]

    Zhou L M, Wang X Y, Shin H-J, Wang J, Tai R Z, Zhang X H, Fang H P, Xiao W, Wang L, Wang C L 2020 J. Am. Chem. Soc. 142 5583Google Scholar

    [16]

    Koshiyama K, Wada S 2016 Sci. Rep. 6 28164Google Scholar

    [17]

    Lohse D, Zhang X H 2015 Rev. Mod. Phys. 87 981Google Scholar

    [18]

    Tan B H, An H J, Ohl C D 2021 Curr. Opin. Colloid Interface Sci. 53 101428Google Scholar

    [19]

    Sun L, Zhang F H, Guo X M, Qiao Z M, Zhu Y, Jin N, Cui Y, Yang W M 2022 Particuology 60 99Google Scholar

    [20]

    Parker J L, Claesson P M, Attard P 1994 J. Phys. Chem. 98 8468Google Scholar

    [21]

    Ishida N, Sakamoto M, Miyahara M, Higashitani K 2000 Langmuir 16 5681Google Scholar

    [22]

    Lou S T, Ouyang Z Q, Zhang Y, Li X J, Hu J, Li M Q, Yang F J 2000 J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct Process, Meas, Phenom. 18 2573

    [23]

    Ishida N, Inoue T, Miyahara M, Higashitani K 2000 Langmuir 16 6377Google Scholar

    [24]

    Holmberg M, Kühle A, Garnæs J, Mørch K A, Boisen A 2003 Langmuir 19 10510Google Scholar

    [25]

    Motornov M, Sheparovych R, Tokarev I, Roiter Y, Minko S 2007 Langmuir 23 13Google Scholar

    [26]

    Shen G X, Zhang X H, Ming Y, Zhang L J, Zhang Y, Hu J 2008 J. Phys. Chem. C 112 4029

    [27]

    Ball P 2003 Nature 423 25Google Scholar

    [28]

    Zhang X H, Khan A, Ducker W A 2007 Phys. Rev. Lett. 98 136101Google Scholar

    [29]

    Zhang X H 2008 Phys. Chem. Chem. Phys. 10 6842Google Scholar

    [30]

    Mezger M, Reichert H, Schöder S, Okasinski J, Schröder H, Dosch H, Palms D, Ralston J, Honkimäki V 2006 Proc. Natl. Acad. Sci. 103 18401Google Scholar

    [31]

    Steitz R, Gutberlet T, Hauss T, Klösgen B, Krastev R, Schemmel S, Simonsen A C, Findenegg G H 2003 Langmuir 19 2409Google Scholar

    [32]

    Switkes M, Ruberti J W 2004 Appl. Phys. Lett. 84 4759Google Scholar

    [33]

    Chan C U, Ohl C D 2012 Phys. Rev. Lett. 109 174501Google Scholar

    [34]

    Barnes G T 1986 Adv. Colloid Interface Sci. 25 89Google Scholar

    [35]

    Dressaire E, Bee R, Bell D C, Lips A, Stone H A 2008 Science 320 1198Google Scholar

    [36]

    Zhang X H, Li G, Maeda N, Hu J 2006 Langmuir 22 9238Google Scholar

    [37]

    German S R, Wu X, An H J, Craig V S, Mega T L, Zhang X H 2014 ACS Nano 8 6193Google Scholar

    [38]

    Dietrich E, Zandvliet H J, Lohse D, Seddon J R 2013 J. Phys. : Condens. Matter 25 184009Google Scholar

    [39]

    Weijs J H, Lohse D 2013 Phys. Rev. Lett. 110 054501Google Scholar

    [40]

    Liu Y W, Wang J J, Zhang X R, Wang W C 2014 J. Chem. Phys. 140 054705Google Scholar

    [41]

    Liu Y W, Zhang X R 2014 J. Chem. Phys. 141 134702Google Scholar

    [42]

    Lohse D, Zhang X H 2015 Phys. Rev. E 91 031003Google Scholar

    [43]

    Chan C U, Arora M, Ohl C D 2015 Langmuir 31 7041Google Scholar

    [44]

    An H J, Tan B H, Zeng Q Y, Ohl C D 2016 Langmuir 32 11212Google Scholar

    [45]

    Wang L, Wang X Y, Wang L S, Hu J, Wang C L, Zhao B Y, Zhang X H, Tai R Z, He M D, Chen L Q 2017 Nanoscale 9 1078Google Scholar

    [46]

    Nag S, Tomo Y, Teshima H, Takahashi K, Kohno M 2021 Phys. Chem. Chem. Phys. 23 24652Google Scholar

    [47]

    Bull D S, Nelson N, Konetski D, Bowman C N, Schwartz D K, Goodwin A P 2018 J. Phys. Chem. Lett. 9 4239Google Scholar

    [48]

    Lan L L, Pan Y C, Zhou L M, Kuang H, Zhang L J, Wen B H 2025 J. Colloid Interface Sci. 678 322Google Scholar

    [49]

    Tan B H, An H J, Ohl C D 2019 Phys. Rev. Lett. 122 134502Google Scholar

    [50]

    Zhang H G, Guo Z J, Zhang X R 2020 Soft Matter 16 5470Google Scholar

    [51]

    Ma X T, Li M B, Pfeiffer P, Eisener J, Ohl C D, Sun C 2022 J. Colloid Interface Sci. 606 1380Google Scholar

    [52]

    Bunkin N F, Shkirin A V, Suyazov N V, Babenko V A, Sychev A A, Penkov N V, Belosludtsev K N, Gudkov S V 2016 J. Phys. Chem. B 120 1291Google Scholar

    [53]

    Wang C L, Li Z X, Li J Y, Xiu P, Hu J, Fang H P 2008 Chin. Phys. B 17 2646Google Scholar

    [54]

    Zhang L J, Chen H, Li Z X, Fang H P, Hu J 2008 Sci. China, Ser. G 51 219

    [55]

    Wang S, Zhou L M, Wang X Y, Wang C L, Dong Y M, Zhang Y, Gao Y X, Zhang L J, Hu J 2019 Langmuir 35 2498Google Scholar

    [56]

    Sun Z H, Gu Z H, Ma W 2023 Anal. Chem. 95 3613Google Scholar

  • [1] WEN Jinghao, LI Chenhui, TU Guohua, WAN Bingbing, DUAN Maochang, ZHANG Rui. Influence of high-temperature chemical non-equilibrium and surface micropore effect on boundary layer stability. Acta Physica Sinica, doi: 10.7498/aps.74.20250269
    [2] Zhang Hai-Song, Lu Mao-Cong, Li Zhi-Gang. An expansion effect based pseudo-boiling critical point model for supercritical CO2. Acta Physica Sinica, doi: 10.7498/aps.73.20240293
    [3] Zhi Chang-Hong, Xu Shuang-Dong, Han Pan-Pan, Chen Ke, You Yun-Xiang. Applicability of high-order unidirectional internal solitary wave theoretical model. Acta Physica Sinica, doi: 10.7498/aps.71.20220411
    [4] Fan Qin-Hua, Zu Yan-Qing, Li Lu, Dai Jin-Fei, Wu Zhao-Xin. Research progress of stability of luminous lead halide perovskite nanocrystals. Acta Physica Sinica, doi: 10.7498/aps.69.20191767
    [5] Chen Lu, Li Ye-Fei, Zheng Qiao-Ling, Liu Qing-Kun, Gao Yi-Min, Li Bo, Zhou Chang-Meng. Theoretical study of atomic relaxation, surface energy, electronic structure and properties of B2- and B19'-NiTi surfaces. Acta Physica Sinica, doi: 10.7498/aps.68.20181944
    [6] Hu Qian-Ku, Hou Yi-Ming, Wu Qing-Hua, Qin Shuang-Hong, Wang Li-Bo, Zhou Ai-Guo. Theoretical calculations of stabilities and properties of transition metal borocarbides TM3B3C and TM4B3C2 compound. Acta Physica Sinica, doi: 10.7498/aps.68.20190158
    [7] Yang Xue, Ding Da-Jun, Hu Zhan, Zhao Guo-Ming. Theoretical study on the structure and stability of neutral and cationic butanone clusters. Acta Physica Sinica, doi: 10.7498/aps.67.20171862
    [8] Li Duo-Fang, Cao Tian-Guang, Geng Jin-Peng, Zhan Yong. Damage-repair model for mutagenic effects of plant induced by ionizing radiation. Acta Physica Sinica, doi: 10.7498/aps.64.248701
    [9] Wang Chao, Liu Cheng-Yuan, Hu Yuan-Ping, Liu Zhi-Hong, Ma Jian-Feng. Stability of information spreading over social network. Acta Physica Sinica, doi: 10.7498/aps.63.180501
    [10] Gao Xing-Hui, Tang Dong, Zhang Cheng-Yun, Zheng Hui, Lu Da-Quan, Hu Wei. Nonlocal surface dark solitons and their stability analysis. Acta Physica Sinica, doi: 10.7498/aps.63.024204
    [11] Lü Jin, Yang Li-Jun, Wang Yan-Fang, Ma Wen-Jin. Density functional theory study of structure characteristics and stabilities of Al2Sn(n=2-10) clusters. Acta Physica Sinica, doi: 10.7498/aps.63.163601
    [12] Li Xiu-Ping, Wang Shan-Jin, Chen Qiong, Luo Shi-Yu. Parametric excitation and stability of crystalline undulator radiation. Acta Physica Sinica, doi: 10.7498/aps.62.224102
    [13] Wang Can-Jun, Li Jiang-Cheng, Mei Dong-Cheng. Effect of noises on the stability of a metapopulation. Acta Physica Sinica, doi: 10.7498/aps.61.120506
    [14] Zhang Juan, Zhou Zhi-Gang, Shi Yu-Ren, Yang Hong-Juan, Duan Wen-Shan. The stability of solitay wave solution to a modified Kadomtsev-Petviashvili equation. Acta Physica Sinica, doi: 10.7498/aps.61.130401
    [15] Cai Shan-Yong, Mei Lei, Peng Hu-Qing, Lu Da-Quan, Hu Wei. The analytical solution and stability of multipole surface soliton in nonlocal nonlinear medium. Acta Physica Sinica, doi: 10.7498/aps.61.154211
    [16] Tang Hui-Shuai, Zhang Xiu-Rong, Kang Zhang-Li, Wu Li-Qing. Theoretical study of geometry structures and stability of OsnN0,±(n=1—6) clusters. Acta Physica Sinica, doi: 10.7498/aps.60.053601
    [17] Ouyang Yu, Peng Jing-Cui, Wang Hui, Yi Shuang-Ping. Study on the stability of carbon nanotubes. Acta Physica Sinica, doi: 10.7498/aps.57.615
    [18] Wang Yan, Han Xiao-Yan, Ren Hui-Zhi, Hou Guo-Fu, Guo Qun-Chao, Zhu Feng, Zhang De-Kun, Sun Jian, Xue Jun-Ming, Zhao Ying, Geng Xin-Hua. Stability of mixed phase silicon thin film material under light soaking. Acta Physica Sinica, doi: 10.7498/aps.55.947
    [19] Ouyang Shi-Gen, Jiang De-Sheng, She Wei-Long. Stability of photovotaic spatial soliton with two-wavelength components. Acta Physica Sinica, doi: 10.7498/aps.53.3033
    [20] WANG DE-ZHEN, MA TENG-CAI. THEORETICAL MODEL FOR THE HEAVY PARTICLE TRANSPORT IN A CATHODE SHEATH. Acta Physica Sinica, doi: 10.7498/aps.49.2404
Metrics
  • Abstract views:  473
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2025
  • Accepted Date:  03 June 2025
  • Available Online:  14 June 2025
  • /

    返回文章
    返回