Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An expansion effect based pseudo-boiling critical point model for supercritical CO2

Zhang Hai-Song Lu Mao-Cong Li Zhi-Gang

Citation:

An expansion effect based pseudo-boiling critical point model for supercritical CO2

Zhang Hai-Song, Lu Mao-Cong, Li Zhi-Gang
cstr: 32037.14.aps.73.20240293
PDF
HTML
Get Citation
  • Heat transfer deterioration (HTD) is one of the important issues in the study of supercritical fluid (SCF) heat transfer. However, when the SCF crosses the pseudo-critical point, the none-quilibrium process occurs in liquid, so SCF is very complicated. Recently, the existence of SCF pseudo-boiling on a macro scale has sparked controversy. There is still no unified understanding of the mechanism of gas-like and liquid-like transition affecting heat transfer. In this work, it is assumed that SCF has a macroscopic phenomenon similar to subcritical flow boiling. By analogy with subcritical boiling heat transfer, a boiling critical point model is proposed to describe the HTD in supercritical CO2. Our study reveals that the HTD caused by pseudo-boiling only occurs under large temperature gradient, which makes the superheated liquid-like layer cover the wall, and the gas-like and liquid-like may present different distribution forms, thus changing the heat transfer characteristics. When the wall temperature is higher than the pseudo-critical temperature and the enthalpy of the fluid layer covering the wall exceeds a certain value, the HTD may occur. The proposed theoretical model can explain the experimental results well, and the prediction accuracy of heat transfer correlation considering pseudo-boiling is greatly improved. In this work, the connection between supercritical heat transfer and subcritical heat transfer is established theoretically, which provides a new idea for studying the deterioration of SCF heat transfer, thus enriching the theory of supercritical heat transfer.
      Corresponding author: Zhang Hai-Song, zhanghaisong@iet.cn
    • Funds: Project supported by the Chinese Academy of Sciences for Young Scientists in Basic Research (Grant No.YSBR-043) and the National Natural Science Foundation of China (Grant No. 52076206).
    [1]

    Jackson J D 2017 Appl. Therm. Eng. 124 1481Google Scholar

    [2]

    Huang D, Wu Z, Sunden B, Li W 2016 Appl. Energ. 162 494Google Scholar

    [3]

    Xie J Z, Liu D C, Yan H B, Xie G N, Boetcher S K S 2020 Int. J. Heat Mass Tran. 149 119233Google Scholar

    [4]

    Cabeza L, Gracia A, Fernández A, Farid M 2017 Appl. Therm. Eng. 125 799Google Scholar

    [5]

    Chen W W, Fang X D, Yu X, Su X H 2015 Ann. Nucl. Energy 76 451Google Scholar

    [6]

    Cheng X, Liu X J 2018 J. Nucl. Eng. Radiat Sc. 4 011003Google Scholar

    [7]

    Maxim F, Contescu C, Boillat P, Niceno B, Karalis K, Testino A, Ludwig C 2019 Nat. Commun. 10 4114Google Scholar

    [8]

    Maxim F, Karalis K, Boillat P, Banuti D, Marquez J, Damian B, Niceno P, Ludwig C 2021 Adv. Sci. 8 2002312Google Scholar

    [9]

    Liu M Y, Tang J, Liu S H 2022 J. Supercrit. Fluids 183 105554Google Scholar

    [10]

    Ackerman J W 1970 J. Heat Tran. 92 490Google Scholar

    [11]

    Zhu B G, Xu J L, Wu X M, Xie J, Li M J 2019 J Int. J. Therm. Sci. 136 254Google Scholar

    [12]

    Zhang H S, Xu J L, Zhu X J, Xie J, Li M J, Zhu B G 2021 Appl. Therm. Eng. 182 116078Google Scholar

    [13]

    Wang Q Y, Ma X J, Xu J L, Li M J, Wang Y 2021 Int. J. Heat Mass Tran. 181 121875Google Scholar

    [14]

    Tripathi P, Basu S 2021 Phys. Fluids 33 043304Google Scholar

    [15]

    Wang J T, Li Z H, Zhai Y L, Wang H 2023 Int. J. Heat Mass Tran. 201 123571Google Scholar

    [16]

    Peeters J 2022 Int. J. Heat Mass Tran. 186 122441Google Scholar

    [17]

    Fan Y H, Tang G H, Sheng Q, Li X 2023 Energy 262 125470Google Scholar

    [18]

    Banuti D T 2015 J. Supercrit. Fluids 98 12Google Scholar

    [19]

    何孝天, 徐进良, 程怡玮 2023 物理学报 72 057801Google Scholar

    He X T, Xu J L, Cheng Y W 2023 Acta Phys. Sin. 72 057801Google Scholar

    [20]

    林瑞泰 1988 沸腾换热 (北京: 科学出版社) 第278页

    Lin R T 1988 Boiling Heat Transfer (Beijing: Science Press) p278

    [21]

    Xu J L, Zhang H S, Zhu B G, Xie J 2020 Solar Eng. 195 27Google Scholar

    [22]

    张海松, 徐进良, 朱鑫杰 2021 物理学报 70 044401Google Scholar

    Zhang H S, Xu J L, Zhu X J 2021 Acta Phys. Sin. 70 044401Google Scholar

    [23]

    Zhang H S, Xu J L, Wang Q Y 2023 Int. J. Therm. Sci. 188 108242Google Scholar

    [24]

    Zhu B G, Xu J L, Yan C S, Xie J 2020 Int. J. Heat Mass Tran. 148 119080Google Scholar

    [25]

    Cheng X, Zhao M, Feuerstein F, Liu X J 2019 Int. J. Heat Mass Tran. 131 527Google Scholar

    [26]

    Gupta S, Mokry S, Pioro I 2011 Proc. ICONE-19 43503 11Google Scholar

    [27]

    Mokry S, Pioro I, Farah A, King K, Gupta S, Peiman W, Kirillov P 2011 Nucl. Eng. Des. 241 1126Google Scholar

    [28]

    Kim D, Kim M 2010 Nucl. Eng. Des. 240 3336Google Scholar

    [29]

    Petukhov B, Kirillov S 1958 Thermal Eng. 4 63

  • 图 1  超临界和亚临界相分布

    Figure 1.  Supercritical and subcritical phase distribution.

    图 2  亚临界和超临界CO2热力学特性 (a) 密度; (b) 潜热; (c) 饱和密度

    Figure 2.  Thermodynamic characteristics of subcritical and supercritical CO2: (a) Density; (b) latent heat; (c) saturated density.

    图 3  (a) 正常传热工况下的R22 (二氟一氯甲烷)壁温分布及流型; (b) 传热恶化工况下的R134a (四氟乙烷)壁温分布及流型

    Figure 3.  (a) R22 (CHCLF2) wall temperature distribution and flow pattern under NHT; (b) R134a (CH2FCF3) wall temperature distribution and flow pattern under HTD.

    图 4  (a) 亚临界压力下的汽泡层模型; (b) 超临界压力下的膨胀层模型

    Figure 4.  (a) Bubble layer model under subcritical pressure; (b) expansion layer model under supercritical pressure.

    图 5  CO2在不同压力下的膨胀能力

    Figure 5.  Expansion capacity of CO2 under different pressures.

    图 6  SBO的微小变化决定两种传热特性的突变 (a)正常传热; (b)传热恶化

    Figure 6.  Sudden changes of two heat transfer characteristics with small deviation from the critical SBO: (a) Normal heat transfer; (b) heat transfer deterioration.

    图 7  不同超临界压力流体在正常传热和恶化传热过程中的Twi/TPBTb/TPB随焓值变化分布

    Figure 7.  Distribution of Twi/TPB and Tb/TPB with enthalpy during normal heat transfer and heat transfer deterioration of different supercritical fluids.

    图 8  上升流和下降流大温度梯度下的sCO2传热恶化 (a) 传热恶化工况下的壁温分布; (b) 温度梯度分布

    Figure 8.  The HTD under large temperature gradient in upflow and downflow operation: (a) Wall temperature distribution at heat transfer deterioration; (b) temperature gradient distribution.

    图 9  K数关联预测超临界H2O、超临界R134a和sCO2壁温的能力 (a) 超临界H2O; (b) 超临界R134a; (c) 超临界CO2

    Figure 9.  Capability of the K number correlation to predict the H2O, R134a and CO2 data at supercritical: (a) Supercritical water; (b) supercritical R134a; (c) supercritical CO2.

    图 10  K数关联式和其他传热关联式预测结果与实验数据比较

    Figure 10.  Comparison of the K number correlation and other heat transfer correlations with experimental database.

    表 1  超临界流体传热关联式回顾

    Table 1.  Review of supercutical fluids heat transfer correlations.

    Ref. Correlation Operatings parameters
    [25] $N{u_{\text{b}}} = 0.023 Re_{\text{b}}^{1.03}Pr_{\text{b}}^{0.5}{F_1}{F_2} \qquad\qquad \qquad \qquad \qquad \qquad \qquad \qquad $ CO2/H2O/R134a
    ${F_1} = \left\{ {\begin{aligned} &0.98, & &{\text{ for }}{{\textit{π}} _{\text{A}}} < 1.75 \times {{10}^{ - 4}}, \\ &0.85 + 0.056{{\left( {{{10}^4}{{\textit{π}} _{\text{A}}}} \right)}^{1.5}}, & &{\text{ for }}1.75 \times {{10}^{ - 4}} \leqslant {{\textit{π}} _{\text{A}}} < 3.75 \times {{10}^{ - 4}}, \\ &13.1/4.5 + {{\left( {104{{\textit{π}} _{\text{A}}}} \right)}^{1.35}}, & &{\text{ for }}3.75 \times {{10}^{ - 4}} < {{\textit{π}} _{\text{A}}} ,\end{aligned}} \right.$
    $ {F_2} = \left\{ {\begin{aligned} & 0.93 Pr_{\text{b}}^{0.265}, & &{\text{ for }}P{r_{\text{b}}} \leqslant 2.5, \\ &1.61 Pr_{\text{b}}^{ - 0.333}, & &{\text{ for }}P{r_{\text{b}}} > 2.5, \end{aligned}} \right. \qquad {{\textit{π}} _{\text{A}}} = \dfrac{{{q_{\text{w}}}{\beta _{\text{b}}}}}{{G{c_{{\text{p}}, {\text{b}}}}}} \qquad\qquad \qquad\qquad $
    [26] $N u_{\mathrm{w}}=0.0033 R e_{\mathrm{w}}^{0.94} \overline{Pr}_{\mathrm{w}}^{0.76}\left( {\rho_{\mathrm{w}}}/{\rho_{\mathrm{b}}}\right)^{0.16}\left( {\mu_{\mathrm{w}}}/{\mu_{\mathrm{b}}}\right)^{0.4} $
    [27] $N u_{\mathrm{b}}=0.0061 R e_{\mathrm{b}}^{0.904} P r_{\mathrm{b}, \mathrm{ave}}^{0.684}\left({\rho_{\mathrm{w}}}/{\rho_{\mathrm{b}}}\right)^{0.564}$ H2O
    P = 24 MPa; di = 10.0 mm
    G = 200—1500 kg/(m2·s)
    qw = 0—1250 kW/m2
    $P{r_{{\mathrm{b, ave}}}} = \dfrac{{{\mu _{\text{b}}}}}{{{\lambda _{{\mathrm{b}}} }}}\dfrac{{{i_{{\mathrm{w}}} } - {i_{{\mathrm{b}}} }}}{{{T_{{\mathrm{w}}} } - {T_{{\mathrm{b}}} }}}$
    [28] $ N{u_{\mathrm{b}}} = 0.226 Re_{\mathrm{b}}^{1.174}Pr_{{{\mathrm{b}}} , {\mathrm{ave}}}^{1.057}{\left( {\dfrac{{{\rho _{\mathrm{w}}}}}{{{\rho _{{\mathrm{b}}} }}}} \right)^{0.571}}{\left( {\dfrac{{{{\overline c }_{{{\mathrm{p, b}}}}}}}{{{c_{{{\mathrm{p} , b}}}}}}} \right)^{1.023}}A{c^{0.489}}B{u^{0.0021}} $ CO2
    P = 7.46—10.26 MPa
    di = 4.5 mm
    G = 208–847 kg/(m2·s)
    qw = 38—234 kW/m2
    $Ac = \dfrac{{{q_{{\mathrm{w}}} }{\beta _{{\mathrm{b}}} }}}{{G{c_{{{\mathrm{p}}} , {\mathrm{b}}}}Re_{{\mathrm{b}}} ^{0.625}}}\left( {\dfrac{{{\mu _{{\mathrm{w}}} }}}{{{\mu _{{\mathrm{b}}} }}}} \right){\left( {\dfrac{{{\rho _{{\mathrm{b}}} }}}{{{\rho _{{\mathrm{w}}} }}}} \right)^{0.5}}$, $Gr{=}\dfrac{{{g} {\beta _{{\mathrm{b}}} }d_{\mathrm{i}}^4{q_{{\mathrm{w}}} }}}{{v_{\mathrm{b}}^2{\lambda _{{\mathrm{b}}} }}}$
    $ Bu = \dfrac{{Gr}}{{Re_{{\mathrm{b}}} ^{3.425}P{r^{0.8}}}}\left( {\dfrac{{{\mu _{{\mathrm{w}}} }}}{{{\mu _{{\mathrm{b}}} }}}} \right){\left( {\dfrac{{{\rho _{{\mathrm{b}}} }}}{{{\rho _{{\mathrm{w}}} }}}} \right)^{0.5}}$, ${\overline c _{{{\mathrm{p, b}}}}} = \dfrac{{{i_{{\mathrm{w}}} } - {i_{{\mathrm{b}}} }}}{{{T_{{\mathrm{w}}} } - {T_{{\mathrm{b}}} }}}$
    [29] $ N u_{\mathrm{b}}=\dfrac{(\xi / 8) R e_{\mathrm{b}} \overline{{Pr}}_{\mathrm{b}}}{1+900 / R e_{\mathrm{b}}+12.7 \sqrt{\xi / 8}\left(\overline{P r}_{\mathrm{b}}^{2 / 3}-1\right)}$
    $\xi=\left[1.82 \log _{10}\left(R e_{\mathrm{b}}\right)-1.64\right]^{-2}\left( {\rho_{\mathrm{w}}}/{\rho_{\mathrm{b}}}\right)^{0.4}\left({\mu_{\mathrm{w}}}/{\mu_{\mathrm{b}}}\right)^{0.2}$
    DownLoad: CSV
  • [1]

    Jackson J D 2017 Appl. Therm. Eng. 124 1481Google Scholar

    [2]

    Huang D, Wu Z, Sunden B, Li W 2016 Appl. Energ. 162 494Google Scholar

    [3]

    Xie J Z, Liu D C, Yan H B, Xie G N, Boetcher S K S 2020 Int. J. Heat Mass Tran. 149 119233Google Scholar

    [4]

    Cabeza L, Gracia A, Fernández A, Farid M 2017 Appl. Therm. Eng. 125 799Google Scholar

    [5]

    Chen W W, Fang X D, Yu X, Su X H 2015 Ann. Nucl. Energy 76 451Google Scholar

    [6]

    Cheng X, Liu X J 2018 J. Nucl. Eng. Radiat Sc. 4 011003Google Scholar

    [7]

    Maxim F, Contescu C, Boillat P, Niceno B, Karalis K, Testino A, Ludwig C 2019 Nat. Commun. 10 4114Google Scholar

    [8]

    Maxim F, Karalis K, Boillat P, Banuti D, Marquez J, Damian B, Niceno P, Ludwig C 2021 Adv. Sci. 8 2002312Google Scholar

    [9]

    Liu M Y, Tang J, Liu S H 2022 J. Supercrit. Fluids 183 105554Google Scholar

    [10]

    Ackerman J W 1970 J. Heat Tran. 92 490Google Scholar

    [11]

    Zhu B G, Xu J L, Wu X M, Xie J, Li M J 2019 J Int. J. Therm. Sci. 136 254Google Scholar

    [12]

    Zhang H S, Xu J L, Zhu X J, Xie J, Li M J, Zhu B G 2021 Appl. Therm. Eng. 182 116078Google Scholar

    [13]

    Wang Q Y, Ma X J, Xu J L, Li M J, Wang Y 2021 Int. J. Heat Mass Tran. 181 121875Google Scholar

    [14]

    Tripathi P, Basu S 2021 Phys. Fluids 33 043304Google Scholar

    [15]

    Wang J T, Li Z H, Zhai Y L, Wang H 2023 Int. J. Heat Mass Tran. 201 123571Google Scholar

    [16]

    Peeters J 2022 Int. J. Heat Mass Tran. 186 122441Google Scholar

    [17]

    Fan Y H, Tang G H, Sheng Q, Li X 2023 Energy 262 125470Google Scholar

    [18]

    Banuti D T 2015 J. Supercrit. Fluids 98 12Google Scholar

    [19]

    何孝天, 徐进良, 程怡玮 2023 物理学报 72 057801Google Scholar

    He X T, Xu J L, Cheng Y W 2023 Acta Phys. Sin. 72 057801Google Scholar

    [20]

    林瑞泰 1988 沸腾换热 (北京: 科学出版社) 第278页

    Lin R T 1988 Boiling Heat Transfer (Beijing: Science Press) p278

    [21]

    Xu J L, Zhang H S, Zhu B G, Xie J 2020 Solar Eng. 195 27Google Scholar

    [22]

    张海松, 徐进良, 朱鑫杰 2021 物理学报 70 044401Google Scholar

    Zhang H S, Xu J L, Zhu X J 2021 Acta Phys. Sin. 70 044401Google Scholar

    [23]

    Zhang H S, Xu J L, Wang Q Y 2023 Int. J. Therm. Sci. 188 108242Google Scholar

    [24]

    Zhu B G, Xu J L, Yan C S, Xie J 2020 Int. J. Heat Mass Tran. 148 119080Google Scholar

    [25]

    Cheng X, Zhao M, Feuerstein F, Liu X J 2019 Int. J. Heat Mass Tran. 131 527Google Scholar

    [26]

    Gupta S, Mokry S, Pioro I 2011 Proc. ICONE-19 43503 11Google Scholar

    [27]

    Mokry S, Pioro I, Farah A, King K, Gupta S, Peiman W, Kirillov P 2011 Nucl. Eng. Des. 241 1126Google Scholar

    [28]

    Kim D, Kim M 2010 Nucl. Eng. Des. 240 3336Google Scholar

    [29]

    Petukhov B, Kirillov S 1958 Thermal Eng. 4 63

  • [1] Yu Bo-Wen, He Xiao-Tian, Xu Jin-Liang. Numerical simulation of fluid-structure coupled heat transfer characteristics of supercritical CO2 pool heat transfer. Acta Physica Sinica, 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [2] Cheng Liang-Yuan, Xu Jin-Liang. Effect of flow direction on heat transfer and flow characteristics of supercritical carbon dioxide. Acta Physica Sinica, 2024, 73(2): 024401. doi: 10.7498/aps.73.20231142
    [3] Zhang Chun-Yan. High-order harmonic platform extension and cluster expansion of H ion cluster. Acta Physica Sinica, 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [4] He Xiao-Tian, Xu Jin-Liang, Cheng Yi-Wei. Measurements and identification of supercritical pseudo-boiling heat transfer modes based on fiber optic probes and multiscale entropy. Acta Physica Sinica, 2023, 72(5): 057801. doi: 10.7498/aps.72.20222060
    [5] Zhi Chang-Hong, Xu Shuang-Dong, Han Pan-Pan, Chen Ke, You Yun-Xiang. Applicability of high-order unidirectional internal solitary wave theoretical model. Acta Physica Sinica, 2022, 71(17): 174701. doi: 10.7498/aps.71.20220411
    [6] Numerical analysis of boundary of Supercritical CO2 liquid-gas like zone *. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211464
    [7] Zhuang Xiao-Ru, Xu Xin-Hai, Yang Zhi, Zhao Yan-Xing, Yu Peng. Numerical investigation on heat transfer of supercritical CO2 in solar receiver tube in high temperature region. Acta Physica Sinica, 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [8] Zhang Hai-Song, Xu Jin-Liang, Zhu Xin-Jie. Dimensional analysis of flow and heat transfer of supercritical CO2 based on pseudo-boiling theory. Acta Physica Sinica, 2021, 70(4): 044401. doi: 10.7498/aps.70.20201546
    [9] Zhang Hai-Song, Zhu Xin-Jie, Zhu Bing-Guo, Xu Jin-Liang, Liu Huan. Effects of buoyancy and acceleration on heat transfer of supercritical CO2 flowing in tubes. Acta Physica Sinica, 2020, 69(6): 064401. doi: 10.7498/aps.69.20191521
    [10] Yan Chen-Shuai, Xu Jin-Liang. Numerical analysis on flow and heat transfer of supercritical CO2 in horizontal tube. Acta Physica Sinica, 2020, 69(4): 044401. doi: 10.7498/aps.69.20191513
    [11] Xu Xiao-Xiao, Wu Yang-Yang, Liu Chao, Wang Kai-Zheng, Ye Jian. Numerical study of cooling heat transfer of supercritical carbon dioxide in a horizontal helically coiled tube. Acta Physica Sinica, 2015, 64(5): 054401. doi: 10.7498/aps.64.054401
    [12] Li Duo-Fang, Cao Tian-Guang, Geng Jin-Peng, Zhan Yong. Damage-repair model for mutagenic effects of plant induced by ionizing radiation. Acta Physica Sinica, 2015, 64(24): 248701. doi: 10.7498/aps.64.248701
    [13] Liang Yuan, Xing Huai-Zhong, Chao Ming-Ju, Liang Er-Jun. Syntheses of negative thermal expansion materials Sc2(MO4)3 (M=W, Mo) with a CO2 laser and their Raman spectra. Acta Physica Sinica, 2014, 63(24): 248106. doi: 10.7498/aps.63.248106
    [14] Gao Song, Li Wei, You Yun-Xiang, Hu Tian-Qun. Numerical investigation on the gas-liquid severe slugging in a pipeline-riser system. Acta Physica Sinica, 2012, 61(10): 104701. doi: 10.7498/aps.61.104701
    [15] Hu Yong-Gang, Xiao Jian-Zhong, Xia Feng, Wu Xi-Wang, Yan Shuang-Zhi. Model of the relationship between properties and phase composition of zirconia solid electrolyte. Acta Physica Sinica, 2010, 59(10): 7447-7451. doi: 10.7498/aps.59.7447
    [16] Liu Chao, Zhang Dong-Xian, Zhang Hai-Jun. Theoretical modeling of microscopic photothermal expansion and experimental study of photothermal microactuators. Acta Physica Sinica, 2009, 58(4): 2619-2624. doi: 10.7498/aps.58.2619
    [17] Xiao Bo-Qi, Chen Ling-Xia, Jiang Guo-Ping, Rao Lian-Zhou, Wang Zong-Chi, Wei Mao-Jin. Mathematical analysis of pool boiling heat transfer. Acta Physica Sinica, 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [18] Fang Zhen-Qian, Hu Ming, Zhang Wei, Zhang Xu-Rui. Micro-Raman spectroscopic investigation of the thermal conductivity of oxidized meso-porous silicon. Acta Physica Sinica, 2008, 57(1): 103-110. doi: 10.7498/aps.57.103
    [19] Zhang Hong-Ying, Wu Shi-Gang. The dynamic process of thin films damage induced by femtosecond laser. Acta Physica Sinica, 2007, 56(9): 5314-5317. doi: 10.7498/aps.56.5314
    [20] WANG DE-ZHEN, MA TENG-CAI. THEORETICAL MODEL FOR THE HEAVY PARTICLE TRANSPORT IN A CATHODE SHEATH. Acta Physica Sinica, 2000, 49(12): 2404-2407. doi: 10.7498/aps.49.2404
Metrics
  • Abstract views:  1238
  • PDF Downloads:  26
  • Cited By: 0
Publishing process
  • Received Date:  26 February 2024
  • Accepted Date:  20 August 2024
  • Available Online:  27 August 2024
  • Published Online:  20 September 2024

/

返回文章
返回