-
In recent years, Physics-Informed Neural Networks (PINNs) have provided effcient data-driven methods for solving both forward and inverse problems of partial differential equations (PDEs). However, when addressing complex PDEs, PINNs face significant challenges in computational effciency and accuracy. In this study, we propose the Extended Mixed-Training Physics-Informed Neural Networks (X-MTPINNs), as illustrated in fig. 1., which effectively enhance the capability for solving nonlinear wave problems by integrating the domain decomposition technique of extended Physics-Informed Neural Networks (X-PINNs) with the mixed-training Physics-Informed Neural Networks (MTPINNs) framework. Compared to the classical PINNs model, the new model exhibits dual advantages: First, the mixed-training framework significantly improves convergence properties by optimizing the handling mechanism of initial and boundary conditions, achieving higher fitting accuracy for nonlinear wave solutions while reducing the computation time by approximately 40%. Second, the domain decomposition technique from X-PINNs strengthens the model’s representation capability for complex dynamical behaviors. Numerical experiments based on the Nonlinear Schrödinger Equation (NLSE) demonstrate that X-MTPINNs excel in solving two bright solitons, third-order rogue waves, and parameter inversion tasks, with prediction accuracy improved by one to two orders of magnitude over traditional PINNs. For inverse problems, the X-MTPINNs algorithm accurately identifies unknown parameters in the NLSE under noise-free, 2%, and 5% noisy conditions, addressing the complete failure of classical PINNs in parameter identification for NLSE under the studied scenarios, thereby exhibiting strong robustness.
-
Keywords:
- PINNs /
- NLSE /
- X-MTPINNs /
- domain decomposition technique /
- parameters discovery
-
[1] Dissanayake M, PHAN-THIEN N 1994 Commun. Numer. Meth. Eng. 10 195
[2] Lagaris I E, Likas A 1998 IEEE Trans. Neural Netw. 9 987
[3] Eymard R, Gallouët T, Herbin R 2000 Handb. Numer. Anal. 7 713
[4] Zhang Y 2009 Appl. Math. Comput. 215 524
[5] Taylor C A, Hughes T J R, Zarins C K 1998 Comput. Methods Appl. Mech. Eng. 158 155
[6] He K M, Zhang X Y,Ren S Q, Sun J 2016 CPRV. 2016-December 770
[7] Ding Y, Li J T, Zhang J X, Li P P, Bai H, Fang B, Fang H X, Huang K, Wang G Y, Nowell C J, Voelcker N H, Peng B, Li L, Huang W 2025 Nat. Commun. 16 743
[8] Liu J, Chen Y B, Liu K,Zhao J 2018 AAAI. 32 4865
[9] Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686
[10] Wang F J, Zhai Z, Zhao Z B, Di Y, Chen X F 2024 Nat. Commun. 15 4332
[11] James D, Alireza D, Soroush A 2019 Sci. Total Environ. 912 168814
[12] Xu S F, Sun Z X, Huang R F, Guo D L, Yang G W, Ju S J 2023 AMS. 39 322302
[13] Chiu P H, Wong J C, Ooi C C, Dao H 2022 Comput. Methods Appl. Mech. Eng. 395 114909
[14] Yang L, Meng X H, Karniadakis G E 2021 J. Comput. Phys. 425 109913
[15] Mojgani R, Balajewicz M, Hassanzadeh P 2023 Comput. Methods Appl. Mech. Eng. 404 115810
[16] Jagtap A D, Karniadakis G E 2021 CEUR Workshop Proc. 2964
[17] Che W J, Chen S C, Liu C, Zhao L C, Akhmediev N 2022 Phys. Rev. A 105 043526
[18] Liu C, Chen S C, Yao X K, Akhmediev N 2022 Physica D 433 133192
[19] Fang Y, Bo W B, Wang R R, Wang Y Y, Dai C Q 2022 Chaos Solit. Fractals 165 112908
[20] Li W T, Chen Y P, Zhang Z, Yang X Y, Li B 2025 Chin. Phys. Lett. 42 010202
[21] Chen M, Wang Z 2023 Chin. Phys. B 32 090504
[22] Li J, Chen Y 2020 Commun. Theor. Phys. 72 105005
[23] Li J, Chen Y 2020 Commun. Theor. Phys. 72 115003
[24] Song J, Zhong M, Karniadakis G E, Yan Z Y 2024 J. Comput. Phys. 505 112917
[25] Wang X L, Wu Z K, Song J, Han W J, Yan Z Y 2024 Chaos Solit. Fractals 180 114509
[26] Qiu T W, Wei G M, Song Y X, Wang Z 2025 Appl. Math. Mech. 46 105
[27] Tian S F, Li B 2023 Acta Phys. Sin. 72 100202
[28] Li J H, Li B 2022 Chaos Solit. Fractals 164 112712
[29] Tian S F, Li B, Zhang Z 2024 Chin. Phys. Lett. 41 030201
[30] Zhou H J, Pu J C, Chen Y 2023 Nonlinear Dyn. 111 14667
[31] Qiu W X, Si Z Z, Mou D S, Dai C Q, Li J T, Liu W 2025 Nonlinear Dyn. 113 4063
[32] Liu X M, Zhang Z Y, Liu W J 2023 Chin. Phys. Lett. 40 070501
[33] Liu H Y, Zhang Y B, Wang L 2024 J. Syst. Sci. 37 494
[34] Zhang W X, Chen Y 2024 Nonlinear Dyn.
[35] Pu J C, Chen Y 2024 J. Comput. Phys. 510 113090
[36] Zhang J F, Dai C Q, Wang Y Y 2016 Rogue Wave Theory and Its Applications Based on the Nonlinear Schrödinger Equation (Beijing: Science Press) pp44-63 (in Chinese) [张解放, 戴朝卿, 王悦悦 2016 基于非线性薛定谔方程的畸形波理论及其应用(北京:科学出版社)第 44-63 页]
Metrics
- Abstract views: 44
- PDF Downloads: 0
- Cited By: 0