-
The inverse problem of low-temperature plasmas refers to determining discharge parameters such as voltage amplitude and frequency from plasma characteristics, including plasma density, electric field and electron temperature. Within the framework of fluid description, it is usually very challenging to address inverse problems using traditional discretization methods. In this work, Physics-Informed Neural Networks (PINNs) are introduced to solve the inverse problem of atmospheric-pressure radio-frequency plasmas. The loss function of the PINNs is constructed by embedding three components: the main governing equations (continuity equation, Poisson equation, and drift–diffusion approximation), the discharge parameters to be inferred (voltage amplitude and frequency in this study), and additional electric field data. The well-trained PINNs can accurately recover the discharge parameters with errors within about 1%, while simultaneously providing the full spatiotemporal evolution of plasma density, electric field, and flux. Furthermore, the effects of sampling positions, sampling sizes, and noise levels of the electric field data on the inversion accuracy of voltage amplitude and frequency are systematically investigated. The results demonstrate that PINNs are capable of achieving precise inversion of discharge parameters and accurate prediction of plasma characteristics under given experimental or computational data, thereby laying the foundation for intelligent control of low-temperature plasmas.
-
Keywords:
- Low-temperature plasma 1 /
- Fluid model 2 /
- Machine learning 3 /
- PhysicsInformed Neural Networks (PINNs)4
-
[1] Massines F, Gouda G 1998 J. Phys. D:Appl. Phys. 31 3411
[2] Huang X, Li Y, Zhong X 2014 Nanoscale Res. Lett. 9 572
[3] Jüstel T, Krupa J C, Wiechert D U 2001 J. Lumin. 93 179
[4] Magureanu M, Bradu C, Piroi D, Mandache N, Parvulescu V I 2013 Plasma Chem. Plasma Process. 33 51
[5] Whittaker A, Graham E, Baxter R, Parr B, Freeman S 2004 J. Hosp. Infect. 56 37
[6] Santhanakrishnan A, Reasor D A, Lebeau R P 2009 Phys. Fluids 21 045110
[7] Shukla P K, Mamun A A 2015 Introduction to Dusty Plasma Physics (Boca Raton: CRC Press)
[8] Zhang X, Zhang X F, Li H P, Jin Y, Sun M, Yu B, Zhao Y 2014 Appl. Microbiol. Biotechnol. 98 5387
[9] Chen Z, Liu M, Xia G, Wang D, Yin Z, Chen J, Wang Z 2012 IEEE Trans. Plasma Sci. 40 2861
[10] Munro J J, Tennyson J 2008 J. Vac. Sci. Technol. A 26 865
[11] Lu X, Reuter S, Laroussi M, Bogaerts A, Bruggeman P, Kong M G 2019 Nonequilibrium Atmospheric Pressure Plasma Jets:Fundamentals, Diagnostics, and Medical Applications (Boca Raton:CRC Press)
[12] Kong M G, Kroesen G, Morfill G, Nosenko T, Shimizu T, Van Dijk J, Zimmermann J L 2009 New J. Phys. 11 115012
[13] Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686
[14] Ames W F 2014 Numerical Methods for Partial Differential Equations (Cambridge, MA:Academic Press)
[15] Wu C, Zhu M, Tan Q, Chen S, Wang M 2023 Comput. Methods Appl. Mech. Eng. 403 115671
[16] Li W K, Zhang Y T 2025 J. Appl. Phys. 137 204501
[17] Li W, Zhang Y 2025 Phys. Fluids 37 075102
[18] Kawaguchi S, Takahashi K, Ohkama H, Makabe T 2020 Plasma Sources Sci. Technol. 29 025021
[19] Wu B, Zhong L 2022 Frontier Academic Forum of Electrical Engineering (Beijing: Chinese Society of Electrical Engineering) p1083
[20] Zhong L L, Wu B Y, Wu Q 2024 Trans. China Electrotechnical Soc. 39 3457(in Chinese)[仲林林,吴冰钰,吴奇2024电工技术学报39 3457]
[21] Kwon H, Kim E, Cho S, Lee J, Choi J, Kim H 2024 Plasma-Simulation Physics Informed Neural Networks (PS-PINNs) for Global Discharge Models (to be published)
[22] Zhang B, Cai G, Weng H, Tao Y 2023 Mach. Learn.:Sci. Technol. 4 045015
[23] Rutigliano N, Rossi R, Murari A, Gelfusa M, Garzotti L 2025 Plasma Phys. Control. Fusion 67 065029
[24] Rossi R, Gelfusa M, Murari A 2023 Nucl. Fusion 63 126059
[25] Zhang Y T, Li Q Q, Lou J, Wang T Y, Zhou X Y 2010 Appl. Phys. Lett. 97 145401
[26] Massines F, Rabehi A, Decomps P, Segur P, Mayoux C 1998 J. Appl. Phys. 83 2950
[27] Vanraes P, Nikiforov A, Bogaerts A, Lauwers D, De Geyter N 2018 Sci. Rep. 8 10919
[28] Shi J, Kong M G 2005 J. Appl. Phys. 97 023304
[29] Yuan X, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495
[30] Chen C, Yang Y, Xiang Y, Zhang W, Tian H 2025 J. Sci. Comput. 104 54
[31] Tian Y, Zhang Y, Zhang H 2023 Mathematics 11 682
[32] Wang X C, Li W K, Ai F, Liu Z B, Zhang Y T 2023 Chin. J. Theor. Appl. Mech. 55 2900(in Chinese)[王绪成,李文凯,艾飞,刘志兵,张远涛2023力学学报55 2900]
[33] Zhang Y T, Gao S H, Zhu Y Y 2023 J. Appl. Phys. 133 054301
[34] Moritz P, Nishihara R, Jordan M 2016 Artif. Intell. Stat. 1 249
[35] Wang F, Casalino L P, Khullar D 2019 JAMA Intern. Med. 179 293
Metrics
- Abstract views: 55
- PDF Downloads: 3
- Cited By: 0