Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Machine learning model predicted thermodynamic stability of rare earth compounds

QIN Chenglong ZHAO Liang JIANG Gang

Citation:

Machine learning model predicted thermodynamic stability of rare earth compounds

QIN Chenglong, ZHAO Liang, JIANG Gang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • This study aims to predict the thermodynamic stability of rare-earth compounds by using machine learning (ML) models, providing crucial data support for designing advanced materials and facilitating the discovery of new rare-earth compounds.In terms of methods, this study is based on a dataset consisting of 280,569 compounds. The formation energies of these compounds are calculated by density functional theory (DFT). A system consisting of 145 feature descriptors is constructed, covering stoichiometric properties, statistical properties of elements, electronic structure properties, and properties of ionic compounds, comprehensively describing the characteristics of rare-earth compounds. Two ML models, i.e. random forest (RF) and neural network (NN), are selected to perform classification and regression tasks respectively. The 5-fold cross-validation is used to improve the reliability of the models. The min-max scaling technique is used for preprocessing data, and an ensemble learning architecture is constructed to address the limitations of single model.In the classification task, the RF and NN algorithms perform remarkably well. With 5-fold cross-validation, the accuracy reaches approximately 0.97, and the F1 score is around 0.98, enabling the precise classification of compounds into stable or unstable categories. In the regression task, the mean absolute errors (MAEs) of the formation energy predictions by the RF and NN models are 0.055 eV/atom and 0.071 eV/atom, respectively. This indicates that the model predictions are highly accurate and can replace complete DFT calculations to a certain extent. In the predictive analysis of system outside the test set, six representative components are selected from the material project database, covering binary, ternary, and quaternary systems. The prediction errors of all compositions are controlled within 0.5 eV/atom, with an error percentage of lower than 25%, indicating that the model has strong ability of extrapolation and prediction. When predicting the binary phase diagrams of rare-earth compounds La-Al and Ce-H by using the trained models, the convex hull phase diagrams constructed through the ensemble learning architecture, which combines the prediction results of the RF and NN models, are highly consistent with those constructed from the open quantum materials database. The models successfully capture several metastable phases that are not present in multiple databases. Moreover, the convex hull distances of the predicted phases are mostly less than 0.1 eV/atom, with the maximum not exceeding 0.2 eV/atom.In conclusion, this study successfully uses ML models to predict the thermodynamic stability of rare-earth compounds. The constructed models demonstrate strong capabilities in classification and regression tasks. The ensemble learning architecture effectively improves the model performance, providing a promising tool for discovering materials in the field of rare-earth science, contributing to the research and development of new rare-earth compounds, and designing advanced materials.
  • 图 1  (a)数据集元素流行分布; (b)数据集稀土元素统计分布柱状图; (c)带有ICSD标签的数据集稀土元素统计分布柱状图; (d) 带有ICSD标签的数据集稀土元素统计分布柱状图

    Figure 1.  (a) Popular distribution of elements in the dataset; (b) statistical distribution histograms of rare earth elements in the dataset; (c) a histogram of the statistical distribution of rare earth elements in a dataset labeled with ICSD; (d) statistical distribution histograms of rare earth elements in datasets with ICSD labels.

    图 2  (a)数据集的形成能分布; (b)数据集材料到凸包的距离统计图; (c)带有ICSD标签的数据集的形成能分布; (d)带有ICSD标签的数据集材料到凸包的距离统计图

    Figure 2.  (a) Statistical chart of the formation energy distribution of the dataset; (b) statistical graph of the distance from the dataset material to the convex hull; (c) statistical graph of formation energy distribution for datasets with ICSD labels; (d) statistical graph of distance from material to convex hull in dataset with ICSD label.

    图 3  (a) RF和(b) NN模型预测的形成能散点图

    Figure 3.  (a) RF and (b) NN model predicted formation energy scatter plots.

    图 4  形成能小于0 eV/atom的子集 (a) RF和(b) NN模型预测的形成能散点图

    Figure 4.  Subset with formation energy less than 0 eV/atom: (a) RF and (b) NN model predicted formation energy scatter plots.

    图 5  化合物稳定性的分类结果 (a) RF和(d) NN模型的混淆矩阵; (b) RF和(e) NN模型的受试者工作特征曲线(ROC); (c) RF和(f) NN模型的精确率-召回率(P-R)曲线

    Figure 5.  Classification results of compound stability: (a) RF and (d) NN model confusion matrices; (b) RF and (e) NN model receiver operating characteristic (ROC) curves; (c) RF and (f) NN model precision-recall (P-R) curves.

    图 6  集成学习架构预测出的 (a) La-Al和(b) Ce-H二元体系的凸包相图; 黑色实线代表了凸包边界, 绿色点代表稳定的组分(凸包能量距离等于0 eV/atom), 红色点代表亚稳定的组分(凸包能量距离小于0.2 eV/atom)

    Figure 6.  Ensemble learning architecture-predicted convex hull phase diagrams of (a) La-Al and (b) Ce-H binary systems; the black solid line represents the boundaries of the convex hull, the green dots represent the stabilized components (the distance to the convex hull equal to 0 eV/atom), and the red dots represent the sub-stabilized components (the distance to the convex hull less than 0.2 eV/atom).

    表 1  使用ML模型预测以及DFT计算得到的组分形成能

    Table 1.  Formation energies of the compositions calculated using ML model and DFT.

    组分ML/(eV·atom–1)DFT/(eV·atom–1)误差
    百分比/%
    EuH2–0.58–0.68715.6
    Tb2O3–3.52–3.98211.6
    CeSi–0.58–0.74922.6
    NdVO3–3.14–3.2212.5
    PrH3O3–1.97–2.19910.4
    LaP3H3O10–2.22–1.94214.3
    DownLoad: CSV

    表 2  预测组分的形成能(Ef)和和凸包能量距离(Ehull)

    Table 2.  Formation enthalpy (Ef) and distance to the convex hull (Ehull) of predicted compositions.

    组分Ef /(eV·atom–1)Ehull/(eV·atom–1)
    Ce2H3–0.5310.0038
    Ce3H8–0.5250.0082
    CeH5–0.1430.1882
    La5Al9–0.4110.0736
    La7Al10–0.4140.0419
    La4Al5–0.4070.0316
    La2Al5–0.3750.0945
    La9Al4–0.2440.008
    DownLoad: CSV
  • [1]

    Dutta T, Kim K H, Uchimiya M, Kwon E E, Jeon B H, Deep A, Yun S T 2016 Environ. Res. 150 182Google Scholar

    [2]

    Ramos S J, Dinali G S, Oliveira C, Martins G C, Moreira C G, Siqueira J O, Guilherme L R G 2016 Curr. Pollut. Rep. 2 28Google Scholar

    [3]

    杜志勇, 沈丽萍, 王清 2025 现代肿瘤医学 33 1Google Scholar

    Du Z Y, Shen L P, Wang Q 2025 J. Mod. Oncol. 33 1Google Scholar

    [4]

    Meng S Y, Li G, Wang P, He M, Sun X H, Li Z X 2023 Mater. Chem. Front. 7 806Google Scholar

    [5]

    Zheng B Z, Fan J Y, Chen B, Qin X, Wang J, Wang F, Deng R R, Liu X G 2022 Chem. Rev. 122 5519Google Scholar

    [6]

    陈娇, 赵超宇, 刘冬 2024 热加工工艺 53 11

    Chen J, Zhao C Y, Liu D 2024 Hot Work. Technol. 53 11

    [7]

    刘贵立 2006 物理学报 55 6570Google Scholar

    Liu G L 2006 Acta Phys. Sin. 55 6570Google Scholar

    [8]

    张国英, 张辉, 魏丹, 罗志成, 李昱材 2009 物理学报 58 444Google Scholar

    Zhang G Y, Zhang H, Wei D, Luo Z C, Li Y C 2009 Acta Phys. Sin. 58 444Google Scholar

    [9]

    Agrawal A, Choudhary A 2016 APL Mater. 4 053208Google Scholar

    [10]

    Pham T L, Nguyen N D, Nguyen V D, Kino H, Miyake T, Dam H C 2018 J. Chem. Phys. 148 204106Google Scholar

    [11]

    Pilania G, Liu X Y, Wang Z 2019 J. Mater. Sci. 54 8361Google Scholar

    [12]

    Singh P, Del Rose T, Vazquez G, Arroyave R, Mudryk Y 2022 Acta Mater. 229 117759Google Scholar

    [13]

    张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清 2024 物理学报 73 230201Google Scholar

    Zhang Q, Tan W, Ning Y Q, Nie G Z, Cai M Q, Wang J N, Zhu H P, Zhao Y Q 2024 Acta Phys. Sin. 73 230201Google Scholar

    [14]

    Lotfi S, Zhang Z, Viswanathan G, Fortenberry K, Mansouri Tehrani A, Brgoch J 2020 Matter 3 261Google Scholar

    [15]

    Schmidt J, Shi J, Borlido P, Chen L, Botti S, Marques M A L 2017 Chem. Mater. 29 5090Google Scholar

    [16]

    Talapatra A, Uberuaga B P, Stanek C R, Pilania G 2021 Chem. Mater. 33 845Google Scholar

    [17]

    Li W, Jacobs R, Morgan D 2018 Comput. Mater. Sci. 150 454Google Scholar

    [18]

    Odabaşı Ç, Yıldırım R 2020 Sol. Energy Mater. Sol. Cells 205 110284Google Scholar

    [19]

    Batra R, Chen C, Evans T G, Walton K S, Ramprasad R 2020 Nat. Mach. Intell. 2 704Google Scholar

    [20]

    Qin C L, Liu J D, Yu Y S, Xu Z H, Du J G, Jiang G, Zhao L 2024 Ceram. Int. 50 1220Google Scholar

    [21]

    Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 npj Comput. Mater. 1 15010Google Scholar

    [22]

    Zagorac D, Muller H, Ruehl S, Zagorac J, Rehme S 2019 J. Appl. Crystallogr. 52 918Google Scholar

    [23]

    Ward L, Agrawal A, Choudhary A, Wolverton C 2016 npj Comput Mater 2 16028Google Scholar

    [24]

    Ward L, Dunn A, Faghaninia A, Zimmermann N E R, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson K A, Snyder G J, Foster I, Jain A 2018 Comput. Mater. Sci. 152 60Google Scholar

    [25]

    Yang C, Ren C, Jia Y F, Wang G, Li M J, Lu W C 2022 Acta Mater. 222 117431Google Scholar

    [26]

    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E 2011 J. Mach. Learn. Res. 12 2825

    [27]

    Bartel C J, Trewartha A, Wang Q, Dunn A, Jain A, Ceder G 2020 npj Comput. Mater. 6 97Google Scholar

    [28]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [29]

    Jha D, Ward L, Paul A, Liao W K, Choudhary A, Wolverton C, Agrawal A 2018 Sci. Rep. 8 17593Google Scholar

  • [1] ZHANG Suncheng, HAN Tongwei, WANG Rumeng, YANG Yantao, ZHANG Xiaoyan. Prediction and optimization of negative Poisson’s ratio in rhombic perforated graphene based on machine learning. Acta Physica Sinica, doi: 10.7498/aps.74.20241624
    [2] WU Yanghai, DU Hailong, XUE Lei, LI Jiaxian, XUE Miao, ZHENG Guoyao. Machine learning-based prediction of heat load on Tokamak divertor target plates. Acta Physica Sinica, doi: 10.7498/aps.74.20250381
    [3] GUO Yan, LYU Heng, DING Chunling, YUAN Chenzhi, JIN Ruibo. Machine learning identification of fractional-order vortex beam diffraction process. Acta Physica Sinica, doi: 10.7498/aps.74.20241458
    [4] ZHANG Tong, WANG Jiahao, TIAN Shuai, SUN Xuran, LI Ri. Machine learning-based study of dynamic shrinkage behavior during solidification of castings. Acta Physica Sinica, doi: 10.7498/aps.74.20241581
    [5] WANG Peng, MAIMAITINIYAZI Maimaitiabudula. Quantum dynamics of machine learning. Acta Physica Sinica, doi: 10.7498/aps.74.20240999
    [6] Song Rui, Liu Xue-Mei, Wang Hai-Bin, Lü Hao, Song Xiao-Yan. Hardness prediction of WC-Co cemented carbide based on machine learning model. Acta Physica Sinica, doi: 10.7498/aps.73.20240284
    [7] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-Qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of magnetic Janus materials based on machine learning and first-principles calculations. Acta Physica Sinica, doi: 10.7498/aps.73.20241278
    [8] Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng. Machine learning based laser homogenization method. Acta Physica Sinica, doi: 10.7498/aps.73.20240747
    [9] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, doi: 10.7498/aps.73.20231618
    [10] Ouyang Xin-Jian, Zhang Yan-Xing, Wang Zhi-Long, Zhang Feng, Chen Wei-Jia, Zhuang Yuan, Jie Xiao, Liu Lai-Jun, Wang Da-Wei. Modeling ferroelectric phase transitions with graph convolutional neural networks. Acta Physica Sinica, doi: 10.7498/aps.73.20240156
    [11] Zhang Yi-Fan, Ren Wei, Wang Wei-Li, Ding Shu-Jian, Li Nan, Chang Liang, Zhou Qian. Machine learning combined with solid solution strengthening model for predicting hardness of high entropy alloys. Acta Physica Sinica, doi: 10.7498/aps.72.20230646
    [12] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, doi: 10.7498/aps.72.20230334
    [13] Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei. Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, doi: 10.7498/aps.72.20231624
    [14] Guo Wei-Chen, Ai Bao-Quan, He Liang. Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty. Acta Physica Sinica, doi: 10.7498/aps.72.20230896
    [15] Kang Jun-Feng, Feng Song-Jiang, Zou Qian, Li Yan-Jie, Ding Rui-Qiang, Zhong Quan-Jia. Machine learning based method of correcting nonlinear local Lyapunov vectors ensemble forecasting. Acta Physica Sinica, doi: 10.7498/aps.71.20212260
    [16] Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu. Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, doi: 10.7498/aps.71.20211632
    [17] Wan Xin-Yang, Zhang Ye-Hui, Lu Shuai-Hua, Wu Yi-Lei, Zhou Qiong-Hua, Wang Jin-Lan. Machine learning accelerated search for new double perovskite oxide photocatalysis. Acta Physica Sinica, doi: 10.7498/aps.71.20220601
    [18] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, doi: 10.7498/aps.70.20210831
    [19] Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie. Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, doi: 10.7498/aps.70.20210879
    [20] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, doi: 10.7498/aps.68.20190942
Metrics
  • Abstract views:  397
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  20 March 2025
  • Accepted Date:  19 April 2025
  • Available Online:  29 April 2025

/

返回文章
返回