Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication of n-i-p perovskite solar cells based on strategy of buried interface modification

SHANG Wenli WANG Likun ZHANG Xiaochun YUE Xin LI Yifeng WAN Zhenghui YANG Huayi LI Ting WANG Hui

Citation:

Fabrication of n-i-p perovskite solar cells based on strategy of buried interface modification

SHANG Wenli, WANG Likun, ZHANG Xiaochun, YUE Xin, LI Yifeng, WAN Zhenghui, YANG Huayi, LI Ting, WANG Hui
cstr: 32037.14.aps.74.20241549
PDF
HTML
Get Citation
  • Normal (n-i-p) perovskite solar cells (PSCs) have received increasing attention due to their advantages such as high conversion efficiency and good stability. Tin dioxide is an ideal electron transport layer material for normal perovskite solar cells. Among various available electron transport layers, tin dioxide stands out because of its excellent stability, low density of defect states, and appropriate energy levels. The interface defects between tin dioxide and perovskite are the key factors restricting the improvement of the conversion efficiency in perovskite solar cells. Therefore, a method of fabricating normal perovskite solar cells based on the buried interface modification strategy is proposed in this work. By doping methylammonium bromide into tin dioxide to form a buried interface, the interface defects between tin dioxide and perovskite are reduced, the electron mobility of tin dioxide is enhanced, and the growth of high-quality perovskite materials is promoted. The conversion efficiency of the normal perovskite solar cells reaches 23.12%, providing an effective strategy for fabricating high-efficiency normal perovskite solar cells.
      Corresponding author: LI Ting, tingli430@lnnu.edu.cn ; WANG Hui, hwang1606@dicp.ac.cn
    • Funds: Project supported by the Doctor Foundation of Science and Technology Department of Liaoning Province, China (Grant No. 2021-BS-200).
    [1]

    Zhang Y Q, Liu X T, Li P W, Duan Y Y, Hu X T, Li F Y, Song Y L 2019 Nano Energy 56 733Google Scholar

    [2]

    Liang C, Li P W, Zhang Y Q, Gu H, Cai Q B, Liu X T, Wang J F, Wen H, Shao G S 2017 J. Power Sources 372 235Google Scholar

    [3]

    Yang S M, Wen J L, Liu Z K, Che Y H, Xu J, Wang J G, Xu D F, Yuan N Y, Ding J N, Duan Y W, Liu S Z 2021 Adv. Energy Mater. 12 2103019Google Scholar

    [4]

    Bu T L, Li J, Zheng F, Chen W J, Wen X M, Ku Z L, Peng Y, Zhong J, Cheng Y B, Huang F Z 2018 Nat. Commun. 9 4609Google Scholar

    [5]

    You S, Zeng H P, Ku Z L, Wang X Z, Wang Z, Rong Y G, Zhao Y, Zheng X, Luo L, Li L, Zhang S J, Li M, Gao X Y, Li X 2020 Adv. Mater. 32 2003990Google Scholar

    [6]

    Wang R, Xue J J, Wang K L, Wang Z K, Luo Y Q, Fenning D, Xu G W, Nuryyeva S, Huang T Y, Zhao Y P, Yang J L, Zhu J H, Wang M H, Tan S, Yavuz I, Houk K N, Yang Y 2019 Science 366 1509Google Scholar

    [7]

    Yang Y G, Lu H Z, Feng S L, Yang L F, Dong H, Wang J O, Tian C, Li L N, Lu H L, Jeong J, Zakeeruddin S M, Liu Y H, Grätzel M, Hagfeldt A 2021 Energy Environ. Sci. 14 3447Google Scholar

    [8]

    Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z X, You J B 2019 Nat. Photonics 13 460Google Scholar

    [9]

    Lou Q, Han Y F, Liu C, Zheng K H, Zhang J S, Chen X, Du Q, Chen C, Ge Z Y 2021 Adv. Energy Mater. 11 2101416Google Scholar

    [10]

    Zhang Z A, Jiang J K, Liu X, Wang X, Wang L Y, Qiu Y K, Zhang Z F, Zheng Y T, Wu X Y, Liang J H, Tian C C, Chen C C, 2021 Small 18 2105184Google Scholar

    [11]

    Liu Z Z, Deng K M, Hu J, Li L 2019 Angew. Chem. Int. Ed. 58 11497Google Scholar

    [12]

    Jung E H, Chen B, Bertens K, Vafaie M, Teale S, Proppe A, Hou Y, Zhu T, Zheng C, Sargent E H 2020 ACS Energy Lett. 5 2796Google Scholar

    [13]

    Parida B, Jin I S, Jung J W 2021 Chem. Mater. 33 5850Google Scholar

    [14]

    Park S Y, Zhu K 2022 Adv. Mater. 34 2110438Google Scholar

    [15]

    Yu Z H, Yang Z B, Ni Z Y, Shao Y C, Chen B, Lin Y Z, Wei H T, Yu Z J, Holman Z, Huang J S 2020 Nat. Energy 5 657Google Scholar

    [16]

    Yang L, Feng J S, Liu Z K, Duan Y W, Zhan S, Yang S M, He K, Li Y, Zhou Y W, Yuan N Y, Ding J N, Liu S Z 2022 Adv. Mater. 34 2201681Google Scholar

    [17]

    Osman M B S, Dessouky A Z M T, Kenawy M A, El-Sharkawy A A 1996 J. Therm. Anal. 46 1697Google Scholar

    [18]

    Yu H, Yeom H I, Lee J W, Lee K, Hwang D, Yun J, Ryu J, Lee J, Bae S, Kim S K, Jang J 2018 Adv. Mater. 30 1704825Google Scholar

    [19]

    Yang D, Zhou X, Yang R X, Yang Z, Yu W, Wang X L, Li C, Liu S Z, Chang R P H 2016 Energy Environ. Sci. 9 3071Google Scholar

    [20]

    Kim M, Jeong J, Lu H Z, Lee T K, Eickemeyer F T, Liu Y H, Choi I W, Choi S J, Jo Y, Kim H B, Mo S I, Kim Y K, Lee H, An N G, Cho S, Tress W R, Zakeeruddin S M, Hagfeldt A, Kim J Y, Grätzel M, Kim D S 2022 Science 375 302Google Scholar

    [21]

    Liu C, Cheng Y B, Ge Z 2020 Chem. Soc. Rev. 49 1653Google Scholar

    [22]

    Chen Z L, Dong Q F, Liu Y, Bao C X, Fang Y J, Lin Y, Tang S, Wang Q, Xiao X, Bai Y, Deng Y H, Huang J S 2017 Nat. Commun. 8 1890Google Scholar

    [23]

    Wang H Y, Xu H J, Wu S H, Wang Y, Wang Y, Wang X H, Liu X D, Huang P 2023 Chem. Eng. J. 476 146587Google Scholar

    [24]

    Li Y, Zheng J L, Chen X L, Sun C, Jiang H, Li G R, Zhang X Y 2021 J. Alloys Compd. 886 161300Google Scholar

    [25]

    Yang S M, Liu W D, Han Y, Liu Z K, Zhao W J, Duan C Y, Che Y H, Gu H S, Li Y B, Liu S Z 2020 Adv. Energy Mater. 10 2002882Google Scholar

    [26]

    Li Z, Sun X L, Zheng X P, Li B, Gao D P, Zhang S F, Wu X W, Li S, Gong J Q, Luther J M , Li Z A, Zhu Z L 2023 Science 382 284Google Scholar

    [27]

    Ji X F, Bi L Y, Fu Q, Li B L, Wang J W, Jeong S Y, Feng K, Ma S X, Liao Q G, Lin F R, Woo H Y, Lu L F, Jen A K Y, Guo X G 2023 Adv. Mater. 35 2303665Google Scholar

    [28]

    Heo J, Lee S W, Yong J, Park H, Lee Y K, Shin J, Whang D R, Chang D W, Park H J 2023 Chem. Eng. J. 474 145632Google Scholar

  • 图 1  SnO2的XPS光谱 (a)未修饰样品(红线)和埋底界面修饰样品(蓝线)的Sn 3d; (b)未修饰样品(红线)和埋底界面修饰样品(蓝线)的O 1s; (c)未修饰样品Sn 3d的拟合光谱; (d)未修饰样品O 1s的拟合光谱; (e) 埋底界面修饰样品Sn 3d的拟合光谱; (f) 埋底界面修饰样品O 1s的拟合光谱

    Figure 1.  XPS spectra of SnO2: (a) Sn 3d for unmodified samples (red line) and buried interface modified samples (blue line); (b) O 1s for unmodified samples (red line) and buried interface modified samples (blue line); (c) fitting spectra of Sn 3d for unmodified samples; (d) fitting spectra of O 1s for unmodified samples; (e) fitting spectra of Sn 3d for buried interface modified samples; (f) fitting spectra of O 1s for buried interface modified samples.

    图 2  (a) SnO2薄膜的电子迁移率; (b) 未修饰样品(红线)和埋底界面修饰样品(蓝线) SnO2的透过率光谱

    Figure 2.  (a) Electron mobility of SnO2 films; (b) transmission spectra of SnO2 for unmodified samples (red line) and buried interface modified samples (blue line).

    图 3  SnO2薄膜的SEM图 (a)未修饰样品, (b)埋底界面修饰样品; SnO2薄膜的AFM图 (c)未修饰样品, (d)埋底界面修饰样品; SnO2薄膜的水接触角图 (e)未修饰样品, (f)埋底界面修饰样品

    Figure 3.  SEM images of SnO2 films for (a) unmodified samples, (b) buried interface modified samples; AFM images of SnO2 films for (c) unmodified samples, (d) buried interface modified samples; water contact angle images of SnO2 films for (e) unmodified samples, (f) buried interface modified samples.

    图 4  钙钛矿薄膜的SEM图 (a)未修饰样品; (b)埋底界面修饰样品; (c)钙钛矿薄膜晶粒尺寸数量分布柱状图

    Figure 4.  SEM images of perovskite films: (a) Unmodified samples; (b) buried interface modified samples; (c) histogram of grain size distribution in perovskite thin films.

    图 5  钙钛矿薄膜的AFM图, 其中(a)未修饰样品, (b)埋底界面修饰样品; 钙钛矿薄膜的水接触角图, 其中(c)未修饰样品, (d)埋底界面修饰样品

    Figure 5.  AFM images of perovskite films for (a) unmodified samples, (b) buried interface modified samples; water contact angle images of perovskite thin films for (c) unmodified samples, (d) buried interface modified samples.

    图 6  未修饰样品(红线)和埋底界面修饰样品(蓝线)的XRD图和(001)晶相的放大图

    Figure 6.  XRD patterns of unmodified samples (red line), buried interface modified samples (blue line), and enlarged images of the (001) crystal phase.

    图 7  钙钛矿薄膜的(a) PL图谱和(b) TRPL图谱, 其中红线为未修饰样品, 蓝线为埋底界面修饰样品

    Figure 7.  (a) PL spectra and (b) TRPL spectra of unmodified samples (red line) and buried interface modified samples (blue line).

    图 8  未修饰样品(红线)和埋底界面修饰样品(蓝线)的SCLC曲线

    Figure 8.  SCLC curves of unmodified samples (red line) and buried interface modified samples (blue line).

    图 9  钙钛矿电池 (a) 正向和反向扫描的J-V曲线; (b) PCE箱线图; (c) VOC箱线图; (d) JSC箱线图; (e) FF箱线图; (f) VOC随光强变化曲线图; (g) EQE曲线图; (h) 莫特-肖特基曲线

    Figure 9.  Perovskite solar cells: (a) J-V curves for forward and reverse scans; (b) box plot of PCE; (c) box plot of VOC; (d) box plot of JSC; (e) box plot of FF; (f) curves of VOC varying with light intensity; (g) EQE curves; (h) Mott-Schottky curves.

    表 1  未修饰样品钙钛矿薄膜; 埋底界面修饰样品的钙钛矿薄膜的TRPL光谱拟合参数

    Table 1.  TRPL spectral fitting parameters for unmodified perovskite film samples and buried interface modified perovskite film samples.

    $ \tau $1/ns A1 $ \tau $2/ns A2 Taverage/ns
    Glass/FTO/SnO2/PVK 20.83 430.0 229.93 1.31 27.63
    Glass/FTO/SnO2+MABr/PVK 16.62 3165.42 243.48 1.24 17.91
    DownLoad: CSV

    表 2  钙钛矿太阳能电池参数

    Table 2.  Parameters of Perovskite Solar Cells.

    Devices VOC/V Jsc/(mA·cm–2) FF/% PCE/%
    glass/FTO/SnO2/PVK/Spiro-OMeTAD/AuForward1.0925.6763.8817.70
    Reverse1.1125.9675.0821.57
    glass/FTO/SnO2+MABr/PVK/Spiro-OMeTAD/AuForward1.1225.8477.7822.56
    Reverse1.1225.8079.9023.12
    DownLoad: CSV
  • [1]

    Zhang Y Q, Liu X T, Li P W, Duan Y Y, Hu X T, Li F Y, Song Y L 2019 Nano Energy 56 733Google Scholar

    [2]

    Liang C, Li P W, Zhang Y Q, Gu H, Cai Q B, Liu X T, Wang J F, Wen H, Shao G S 2017 J. Power Sources 372 235Google Scholar

    [3]

    Yang S M, Wen J L, Liu Z K, Che Y H, Xu J, Wang J G, Xu D F, Yuan N Y, Ding J N, Duan Y W, Liu S Z 2021 Adv. Energy Mater. 12 2103019Google Scholar

    [4]

    Bu T L, Li J, Zheng F, Chen W J, Wen X M, Ku Z L, Peng Y, Zhong J, Cheng Y B, Huang F Z 2018 Nat. Commun. 9 4609Google Scholar

    [5]

    You S, Zeng H P, Ku Z L, Wang X Z, Wang Z, Rong Y G, Zhao Y, Zheng X, Luo L, Li L, Zhang S J, Li M, Gao X Y, Li X 2020 Adv. Mater. 32 2003990Google Scholar

    [6]

    Wang R, Xue J J, Wang K L, Wang Z K, Luo Y Q, Fenning D, Xu G W, Nuryyeva S, Huang T Y, Zhao Y P, Yang J L, Zhu J H, Wang M H, Tan S, Yavuz I, Houk K N, Yang Y 2019 Science 366 1509Google Scholar

    [7]

    Yang Y G, Lu H Z, Feng S L, Yang L F, Dong H, Wang J O, Tian C, Li L N, Lu H L, Jeong J, Zakeeruddin S M, Liu Y H, Grätzel M, Hagfeldt A 2021 Energy Environ. Sci. 14 3447Google Scholar

    [8]

    Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z X, You J B 2019 Nat. Photonics 13 460Google Scholar

    [9]

    Lou Q, Han Y F, Liu C, Zheng K H, Zhang J S, Chen X, Du Q, Chen C, Ge Z Y 2021 Adv. Energy Mater. 11 2101416Google Scholar

    [10]

    Zhang Z A, Jiang J K, Liu X, Wang X, Wang L Y, Qiu Y K, Zhang Z F, Zheng Y T, Wu X Y, Liang J H, Tian C C, Chen C C, 2021 Small 18 2105184Google Scholar

    [11]

    Liu Z Z, Deng K M, Hu J, Li L 2019 Angew. Chem. Int. Ed. 58 11497Google Scholar

    [12]

    Jung E H, Chen B, Bertens K, Vafaie M, Teale S, Proppe A, Hou Y, Zhu T, Zheng C, Sargent E H 2020 ACS Energy Lett. 5 2796Google Scholar

    [13]

    Parida B, Jin I S, Jung J W 2021 Chem. Mater. 33 5850Google Scholar

    [14]

    Park S Y, Zhu K 2022 Adv. Mater. 34 2110438Google Scholar

    [15]

    Yu Z H, Yang Z B, Ni Z Y, Shao Y C, Chen B, Lin Y Z, Wei H T, Yu Z J, Holman Z, Huang J S 2020 Nat. Energy 5 657Google Scholar

    [16]

    Yang L, Feng J S, Liu Z K, Duan Y W, Zhan S, Yang S M, He K, Li Y, Zhou Y W, Yuan N Y, Ding J N, Liu S Z 2022 Adv. Mater. 34 2201681Google Scholar

    [17]

    Osman M B S, Dessouky A Z M T, Kenawy M A, El-Sharkawy A A 1996 J. Therm. Anal. 46 1697Google Scholar

    [18]

    Yu H, Yeom H I, Lee J W, Lee K, Hwang D, Yun J, Ryu J, Lee J, Bae S, Kim S K, Jang J 2018 Adv. Mater. 30 1704825Google Scholar

    [19]

    Yang D, Zhou X, Yang R X, Yang Z, Yu W, Wang X L, Li C, Liu S Z, Chang R P H 2016 Energy Environ. Sci. 9 3071Google Scholar

    [20]

    Kim M, Jeong J, Lu H Z, Lee T K, Eickemeyer F T, Liu Y H, Choi I W, Choi S J, Jo Y, Kim H B, Mo S I, Kim Y K, Lee H, An N G, Cho S, Tress W R, Zakeeruddin S M, Hagfeldt A, Kim J Y, Grätzel M, Kim D S 2022 Science 375 302Google Scholar

    [21]

    Liu C, Cheng Y B, Ge Z 2020 Chem. Soc. Rev. 49 1653Google Scholar

    [22]

    Chen Z L, Dong Q F, Liu Y, Bao C X, Fang Y J, Lin Y, Tang S, Wang Q, Xiao X, Bai Y, Deng Y H, Huang J S 2017 Nat. Commun. 8 1890Google Scholar

    [23]

    Wang H Y, Xu H J, Wu S H, Wang Y, Wang Y, Wang X H, Liu X D, Huang P 2023 Chem. Eng. J. 476 146587Google Scholar

    [24]

    Li Y, Zheng J L, Chen X L, Sun C, Jiang H, Li G R, Zhang X Y 2021 J. Alloys Compd. 886 161300Google Scholar

    [25]

    Yang S M, Liu W D, Han Y, Liu Z K, Zhao W J, Duan C Y, Che Y H, Gu H S, Li Y B, Liu S Z 2020 Adv. Energy Mater. 10 2002882Google Scholar

    [26]

    Li Z, Sun X L, Zheng X P, Li B, Gao D P, Zhang S F, Wu X W, Li S, Gong J Q, Luther J M , Li Z A, Zhu Z L 2023 Science 382 284Google Scholar

    [27]

    Ji X F, Bi L Y, Fu Q, Li B L, Wang J W, Jeong S Y, Feng K, Ma S X, Liao Q G, Lin F R, Woo H Y, Lu L F, Jen A K Y, Guo X G 2023 Adv. Mater. 35 2303665Google Scholar

    [28]

    Heo J, Lee S W, Yong J, Park H, Lee Y K, Shin J, Whang D R, Chang D W, Park H J 2023 Chem. Eng. J. 474 145632Google Scholar

  • [1] Yang Jing, Han Xiao-Jing, Liu Dong-Xue, Shi Biao, Wang Peng-Yang, Xu Sheng-Zhi, Zhao Ying, Zhang Xiao-Dan. Preparation of wide-bandgap perovskite thin films by propylamine hydrochloride assisted gas quenching method. Acta Physica Sinica, 2024, 73(15): 158401. doi: 10.7498/aps.73.20240561
    [2] Qu Zi-Han, Zhao Yang, Ma Fei, You Jing-Bi. Preparation of high-performance large-area perovskite solar cells by atomic layer deposition of metal oxide buffer layer. Acta Physica Sinica, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [3] Zhang Xi-Sheng, Yan Chun-Yu, Hu Li-Na, Wang Jing-Zhou, Yao Chen-Zhong. Perovskite solar cells prepared by processing CsPbBr3 nanocrystalline films in low temperature solution. Acta Physica Sinica, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [4] Han Xiao-Jing, Yang Jing, Zhang Jia-Li, Liu Dong-Xue, Shi Biao, Wang Peng-Yang, Zhao Ying, Zhang Xiao-Dan. Electron transport layer of tin dioxide deposited by reactive plasma and its application in perovskite solar cells. Acta Physica Sinica, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [5] Han Mei-Dou-Xue,  Wang Ya,  Wang Rong-Bo,  Zhao Jun-Tao,  Ren Hui-Zhi,  Hou Guo-Fu,  Zhao Ying,  Zhang Xiao-Dan,  Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [6] Han Mei-Dou-Xue, Wang Ya, Wang Rong-Bo, Zhao Jun-Tao, Ren Hui-Zhi, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan, Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [7] Li Yan, He Hong, Dang Wei-Wu, Chen Xue-Lian, Sun Can, Zheng Jia-Lu. Research progress of light irradiation stability of functional layers in perovskite solar cells. Acta Physica Sinica, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [8] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Simulation and property calculation for FA1–xCsx PbI3–y Bry: Structures and optoelectronical properties. Acta Physica Sinica, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [9] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells. Acta Physica Sinica, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [10] Xu Ting, Wang Zi-Shuai, Li Xuan-Hua, Sha Wei E. I.. Loss mechanism analyses of perovskite solar cells with equivalent circuit model. Acta Physica Sinica, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [11] Pan Heng, Chen Pei-Run, Shi Biao, Li Yu-Cheng, Gao Qing-Yun, Zhang Li, Zhao Ying, Huang Qian, Zhang Xiao-Dan. Review of the research on nano-structure used as light harvesting in perovskite solar cells. Acta Physica Sinica, 2020, 69(7): 077101. doi: 10.7498/aps.69.20191660
    [12] Liang Xiao-Juan, Cao Yu, Cai Hong-Kun, Su Jian, Ni Jian, Li Juan, Zhang Jian-Jun. Simulation and architectural design for Schottky structure perovskite solar cells. Acta Physica Sinica, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [13] Chen Yong-Liang, Tang Ya-Wen, Chen Pei-Run, Zhang Li, Liu Qi, Zhao Ying, Huang Qian, Zhang Xiao-Dan. Progress in perovskite solar cells based on different buffer layer materials. Acta Physica Sinica, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [14] Chen Jun-Fan, Ren Hui-Zhi, Hou Fu-Hua, Zhou Zhong-Xin, Ren Qian-Shang, Zhang De-Kun, Wei Chang-Chun, Zhang Xiao-Dan, Hou Guo-Fu, Zhao Ying. Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells. Acta Physica Sinica, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [15] Wu Bu-Jun, Lin Dong-Xu, Li Zheng, Cheng Zhen-Ping, Li Xin, Chen Ke, Shi Ting-Ting, Xie Wei-Guang, Liu Peng-Yi. Optimization of grain size to achieve high-performance perovskite solar cells in vapor deposition. Acta Physica Sinica, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [16] Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Shao-Hua, Pan Ling, Li Wen-Biao, Yang Shi-E, Chen Yong-Sheng. Influence of annealing temperature on properties of Cu2O thin films deposited by electron beam evaporation. Acta Physica Sinica, 2018, 67(5): 053301. doi: 10.7498/aps.67.20172463
    [17] Li Shao-Hua, Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Wen-Biao, Pan Ling, Yang Shi-E, Chen Yong-Sheng. Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [18] Wang Jun-Xia, Bi Zhuo-Neng, Liang Zhu-Rong, Xu Xue-Qing. Progress of new carbon material research in perovskite solar cells. Acta Physica Sinica, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [19] Wang Fu-Zhi, Tan Zhan-Ao, Dai Song-Yuan, Li Yong-Fang. Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [20] Zhang Yuan, Zhao Ying, Cai Ning, Xiong Shao-Zhen. Preparation of anatase TiO2 nanotubes and their dye-sensitized solar cells. Acta Physica Sinica, 2008, 57(9): 5806-5809. doi: 10.7498/aps.57.5806
Metrics
  • Abstract views:  330
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  04 November 2024
  • Accepted Date:  26 November 2024
  • Available Online:  04 December 2024
  • Published Online:  20 January 2025

/

返回文章
返回