搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丙胺盐酸盐辅助结合气淬法制备高效宽带隙钙钛矿太阳电池

杨静 韩晓静 刘冬雪 石标 王鹏阳 许盛之 赵颖 张晓丹

引用本文:
Citation:

丙胺盐酸盐辅助结合气淬法制备高效宽带隙钙钛矿太阳电池

杨静, 韩晓静, 刘冬雪, 石标, 王鹏阳, 许盛之, 赵颖, 张晓丹

Preparation of wide-bandgap perovskite thin films by propylamine hydrochloride assisted gas quenching method

Yang Jing, Han Xiao-Jing, Liu Dong-Xue, Shi Biao, Wang Peng-Yang, Xu Sheng-Zhi, Zhao Ying, Zhang Xiao-Dan
PDF
HTML
导出引用
  • 宽带隙钙钛矿与晶硅电池结合制备叠层太阳电池, 其效率可以超越单结太阳电池的理论极限. 然而, 宽带隙钙钛矿薄膜结晶速率快, 导致薄膜结晶质量差且具有大量缺陷, 严重降低电池的光电转换性能. 本文采用温和的气淬法制备宽带隙钙钛矿薄膜, 并引入丙胺盐酸盐作为添加剂改善钙钛矿薄膜的结晶质量. 丙胺阳离子与钙钛矿组分相互作用生成了二维钙钛矿相, 钙钛矿以二维相作为生长模板降低了α相钙钛矿的形成能, 同时辅助钙钛矿均匀成核和择优取向生长, 增大了晶粒尺寸. 使用该策略制备的带隙为1.68 eV的钙钛矿太阳电池实现了21.48%的光电转换效率. 此外, 制备的8 cm×8 cm的宽带隙钙钛矿薄膜具有良好的均匀性. 本工作为高效、大面积钙钛矿基的光伏器件的制备工艺提供了新的策略.
    Perovskite is a material with excellent photovoltaic properties, and the efficiency of perovskite solar cells has increased rapidly in recent years. By utilizing the adjustable bandgap characteristics of perovskite materials, wide-bandgap perovskite solar cells can be combined with narrow-bandgap solar cells to make tandem solar cells. Tandem devices can improve the utilization of the solar spectra and achieve higher power conversion efficiency. An important prerequisite for preparing efficient photovoltaic devices is to fabricate high-quality perovskite active layers. Antisolvent-assisted spin-coating is currently a commonly used method for preparing high-quality perovskite films in the laboratory. However, the low solubility of inorganic cesium and bromine salts in the preparation of wide-bandgap perovskite thin films leads to a fast crystallization rate, poor crystallization quality and a large number of defects, seriously reducing the photovoltaic performance of the devices. In addition, the antisolvent has a narrow working window, which is not conducive to the preparation of large-area perovskite films. In this work, a mild gas quenching process is used to assist the spin-coating method in preparing wide-bandgap perovskite films, and propylamine hydrochloride is introduced as an additive to improve the crystallization quality and uniformity of large-area preparation of perovskite film. The interaction between the propylamine cation and the perovskite component produces a two-dimensional perovskite phase. Two-dimensional phase is used as the growth template for perovskite composition in order to reduce the formation energy of α-phase perovskite, which is beneficial to uniform nucleation and preferential orientation growth of perovskite, the increase of grain size and the decrease of grain boundaries within the film. The improvement of the crystalline quality of the perovskite film can reduce the defect density inside the film and suppress the non-radiative recombination of the photogenerated carriers. The perovskite solar cell with a bandgap of 1.68 eV, prepared by using this strategy, achieves a power conversion efficiency of 21.48%. In addition, the 8 cm×8 cm wide-bandgap perovskite films prepared by this method exhibit good uniformity. This work provides a strategy for developing the process of efficient and large-area perovskite photovoltaic devices.
      通信作者: 刘冬雪, liu_dongxue@ctg.com.cn ; 石标, biaos_xiaog@163.com ; 张晓丹, xdzhang@nankai.edu.cn
    • 基金项目: 中国长江三峡集团有限公司科研项目(批准号: 202103571)、国家自然科学基金(批准号: 62274099)和国家自然科学基金联合基金重点项目(批准号: U21A2072)资助的课题.
      Corresponding author: Liu Dong-Xue, liu_dongxue@ctg.com.cn ; Shi Biao, biaos_xiaog@163.com ; Zhang Xiao-Dan, xdzhang@nankai.edu.cn
    • Funds: Project supported by the Scientific Research Project of China Three Gorges Corporation (Grant No. 202103571), the National Natural Science Foundation of China (Grant No. 62274099), and the Key Program of the Joint Funds of the National Natural Science Foundation of China (Grant No. U21A2072).
    [1]

    Chen H, Liu C, Xu J, Maxwell A, Zhou W, Yang Y, Zhou Q L, Bati A S R, Wan H Y, Wang Z W, Zeng L W, Wang J K, Serles P, Liu Y, Teale S, Liu Y J, Saidaminov M I, Li M Z, Rolston N, Hoogland S, Filleter T, MercouriG. Kanatzidis, Chen B, Ning Z J, Sargent E H 2024 Science 384 189Google Scholar

    [2]

    Chen B, Zheng X P, Bai Y, Padture N P, Huang J S 2017 Adv. Energy Mater. 7 1602400Google Scholar

    [3]

    Jošt M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar

    [4]

    LONGi https://www.longi.com/en/news/2024-snec-silicon-perovskite-tandem-solar-cells-new-world-efficiency/ [2024-6-21]

    [5]

    Jiang Q, Tong J H, Xian Y M, Kerner R A, Dunfield S P, Xiao C X, Scheidt R A, Kuciauskas D, Wang X M, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y F, Zhu K 2022 Nature 611 278Google Scholar

    [6]

    Azmi R, Ugur E, Seitkhan A, Aljamaan F, Subbiah A S, Liu J, Harrison G T, Nugraha M I, Eswaran M K, Babics M, Chen Y, Xu F, Allen T G, Rehman A U, Wang C L, Anthopoulos T D, Schwingenschlögl U, Bastiani M D, Aydin E, Wolf S D 2022 Science 376 73Google Scholar

    [7]

    Chen C, Jiang Y, Feng Y C, Li Z X, Cao N J, Zhou G F, Liu J M, Kempa K, Feng S P, Gao J W 2021 Mater. Today Phys. 21 100565Google Scholar

    [8]

    Huang H H, Liu Q H, Tsai H, Shrestha S, Su L Y, Chen P T, Chen Y T, Yang T A, Lu H, Chuang C H, Lin K F, Rwei S P, Nie W, Wang L 2021 Joule 5 958Google Scholar

    [9]

    Yu Y, Zhang F, Hou T, Sun X, Yu H, Zhang M 2021 Sol. RRL 5 2100386Google Scholar

    [10]

    Zhang X, Qiu W M, Song W Y, Hawash Z, Wang Y X, Pradhan B, Zhang Y Y, Naumenko D, Amenitsch H, Moons E, Merckx T, Aguirre A, Abdulraheem Y, Aernouts T, Zhan Y Q, Kuang Y H, Hofkens J, Poortmans J 2022 Sol. RRL 6 2200053Google Scholar

    [11]

    Szostak R, Sanchez S, Marchezi P E, Marques A S, Silva J C, Holanda M S, Hagfeldt A, Tolentino H C N, Nogueira A F 2020 Adv. Funct. Mater. 31 2007473Google Scholar

    [12]

    Kaczaral S C, Morales D A, Schreiber S W, Martinez D, Conley A M, Herath R, Eperon G E, Choi J J, McGehee M D, Moore D T 2023 APL Energy 1 036112Google Scholar

    [13]

    Liu L, Yang Y, Du M Y, Cao Y X, Ren X D, Zhang L, Wang H, Zhao S, Wang K, Liu S Z 2022 Adv. Energy Mate. 13 2202802Google Scholar

    [14]

    Tong Y, Najar A, Wang L, Liu L, Du M Y, Yang J, Li J X, Wang K, Liu S Z 2022 Adv. Sci. 9 2105085Google Scholar

    [15]

    Nie T, Fang Z M, Ren X D, Duan Y, Liu S Z 2023 Nano-Micro Lett. 15 70Google Scholar

    [16]

    Bush K A, Frohna K, Prasanna R, Beal R E, Leijtens T, Swifter S A, McGehee M D 2018 ACS Energy Lett. 3 428Google Scholar

    [17]

    Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar

    [18]

    Jiang Q, Tong J H, Scheidt R A, Wang X M, Louks A E, Xian Y M, Tirawat R, Palmstrom A F, Hautzinger M P, Harvey S P, Johnston S, Schelhas L T, Larson B W, Warren E L, Beard M C, Berry J J, Yan Y, Zhu K 2022 Science 378 1295Google Scholar

    [19]

    Wen J, Zhao Y C, Liu Z, Gao H, Lin R X, Wan S S, Ji C L, Xiao K, Gao Y, Tian Y X, Xie J, Brabec C J, Tan H R 2022 Adv. Mater. 34 2110356Google Scholar

    [20]

    Kim M J, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [21]

    Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar

    [22]

    Li F Z, Deng X, Shi Z S, Wu S F, Zeng Z X, Wang D, Li Y, Qi F, Zhang Z M, Yang Z B, Jang S H, Lin F R, Tsang S W, Chen X K, Jen A K Y 2023 Nat. Photonics 17 478Google Scholar

    [23]

    Yao Q, Xie Y M, Zhou Y Z, Xue Q F, Xu X, Gao Y J, Niu T Q, Chu L H, Zhou Z S, Lin F R, Jen A K Y, Shi T T, Yip H L, Cao Y 2023 Adv. Funct. Mater. 33 2212599Google Scholar

    [24]

    Qiao L, Ye T S, Wang P S, Wang T, Zhang L, Sun R T, Kong W Y, Yang X D 2023 Adv. Funct. Mater. 34 2308908Google Scholar

    [25]

    Zhang X P, Li X Y, Tao L, Zhang Z M, Ling H, Fu X, Wang S B, Ko M J, Luo J S, Chen J Z, Li Y L 2023 Small 19 2208289Google Scholar

    [26]

    Yao Q, Xue Q F, Li Z C, Zhang K C, Zhang T, Li N, Yang S H, Brabec C J, Yip H L, Cao Y 2020 Adv. Mater. 32 2000571Google Scholar

    [27]

    Bu T L, Ono L K, Li J, Su J, Tong G Q, Zhang W, Liu Y Q, Zhang J H, Chang J J, Kazaoui S, Huang F Z, Cheng Y B, Qi Y B 2022 Nature Energy 7 528Google Scholar

    [28]

    Huang Y, Liang J H, Zhang Z F, Zheng Y T, Wu X Y, Tian C C, Zhou Z, Wang J L, Yang Y J, Sun A X, Liu Y, Tang C, Chen Z H, Chen C C 2022 Small Methods 6 2200933Google Scholar

    [29]

    Yan N, Gao Y, Yang J J, Fang Z M, Feng J S, Wu X J, Chen T, Liu S Z 2023 Angew. Chem. Int. Edit. 62 e202216668Google Scholar

    [30]

    He R, Yi Z J, Luo Y, Luo J C, Wei Q, Lai H G, Huang H, Zou B S, Cui G Y, Wang W W, Xiao C X, Ren S Q, Chen C, Wang C L, Xing G H, Fu F, Zhao D W 2022 Adv. Sci. 9 2203210Google Scholar

    [31]

    Le Corre V M, Duijnstee E A, El Tambouli O, Ball J M, Snaith H J, Lim J, Koster L J A 2021 ACS Energy Lett. 6 1087Google Scholar

  • 图 1  钙钛矿薄膜的结构特性表征 (a) 参考组薄膜的表面SEM图像; (b) 实验组薄膜的表面SEM图像; (c) 参考组和实验组薄膜的XRD图谱; (d) 参考组和实验组薄膜的UV-vis曲线

    Fig. 1.  Characterization of structural properties of perovskite films: (a) Top-view SEM image of control perovskite films; (b) top-view SEM image of PACl-treated perovskite films; (c) XRD patterns of control and PACl-treated films; (d) UV-vis curves of control and PACl-treated films.

    图 2  钙钛矿薄膜光电特性表征 (a) 参考组和实验组钙钛矿薄膜的PL光谱; (b) 参考组和实验组钙钛矿薄膜的TRPL光谱

    Fig. 2.  Characterization of optoelectronic properties of perovskite films: (a) The PL spectra of control and PACl-treated perovskite films; (b) the TRPL spectra of control and PACl-treated perovskite films.

    图 3  钙钛矿薄膜的结晶动力学表征 (a) 参考组钙钛矿前驱膜在不同温度下退火3 min的XRD图谱; (b) 实验组钙钛矿前驱膜在不同温度下退火3 min的XRD图谱

    Fig. 3.  Characterization of crystallization kinetics of perovskite films: (a) XRD patterns of control perovskite precursor films annealed at different temperatures for 3 min; (b) XRD patterns of PACl-treated perovskite precursor films annealed at different temperatures for 3 min.

    图 4  PACl对钙钛矿薄膜的结晶调控作用 (a) 2D钙钛矿薄膜和添加PACl的钙钛矿前驱膜的XRD图谱; (b) 参考组钙钛矿前驱膜表面SEM图; (c) 实验组钙钛矿前驱膜表面SEM图

    Fig. 4.  Crystalline modulation of perovskite thin films by PACl: (a) XRD patterns of 2D perovskite films and PACl-treated perovskite precursor films; (b) top-view SEM image of control perovskite precursor films; (c) top-view SEM image of PACl-treated perovskite precursor films.

    图 5  PACl辅助钙钛矿薄膜结晶的机理示意图

    Fig. 5.  Schematic diagram of the mechanism of PACl-assisted crystallization of perovskite films.

    图 6  不同制备条件下钙钛矿太阳电池的J-V曲线

    Fig. 6.  J-V curves of perovskite solar cells under different preparation conditions.

    图 7  钙钛矿太阳电池的性能参数统计图 (a) VOC; (b) FF; (c) JSC; (d) PCE

    Fig. 7.  Statistical graphs of the performance parameters of perovskite solar cells: (a) VOC; (b) FF; (c) JSC; (d) PCE.

    图 8  钙钛矿太阳电池的光电转换性能表征, 即参考组和实验组钙钛矿太阳电池的(a) J-V曲线、(b) EQE曲线和(c) SPO曲线

    Fig. 8.  Characterization of photovoltaic conversion performance of perovskite solar cells: (a) J-V curves, (b) EQE curves, and (c) SPO curves of control and PACl-treated perovskite solar cells.

    图 9  钙钛矿器件的光电性能表征, 即参考组和实验组太阳电池的(a) 暗态J-V曲线、(b) VOC依赖光强测试曲线和(c) SCLC曲线

    Fig. 9.  Characterization of optoelectronic properties of perovskite devices: (a) Dark-state J-V curves, (b) VOC-dependent light intensity test curves, and (c) SCLC curves of control and PACl-treated solar cells.

    图 10  大面积钙钛矿薄膜的均匀性表征 (a) 参考组大面积钙钛矿薄膜不同位置的UV-vis曲线(插图为8 cm×8 cm的钙钛矿薄膜实物图); (b) 实验组大面积钙钛矿薄膜不同位置的UV-vis曲线

    Fig. 10.  Homogeneity characterization of large-area perovskite films: (a) UV-vis curves of control large-area perovskite films at different positions (the inset shows a picture of a perovskite film with a size of 8 cm×8 cm); (b) UV-vis curves of PACl-treated large-area perovskite films at different positions.

    图 11  大面积钙钛矿薄膜的厚度均匀性表征 (a) 参考组大面积钙钛矿薄膜不同位置的截面SEM图像; (b) 实验组大面积钙钛矿薄膜不同位置的截面SEM图像

    Fig. 11.  Characterization of large-area perovskite films thickness homogeneity: (a) Cross-sectional SEM images of control large-area perovskite films at different positions; (b) cross-sectional SEM images of PACl-treated large-area perovskite films at different positions.

    表 1  参考组和实验组钙钛矿薄膜的TRPL光谱拟合参数

    Table 1.  Fitting parameters of TRPL spectra of control and PACl-treated perovskite films.

    Sample τ1/ns τ2/ns A1/% A2/% τave/ns
    Control 64.9 732.3 9.69 90.31 667.7
    PACl 62.8 1115.5 3.65 96.35 1077.1
    下载: 导出CSV

    表 2  不同制备条件下钙钛矿太阳电池的J-V性能参数

    Table 2.  J-V performance parameters of perovskite solar cells under different preparation conditions.

    Device VOC/V JSC/(mA·cm–2) FF/% PCE/%
    W/O N2 & PACl 1.096 18.70 73.85 15.14
    With N2 1.184 19.66 81.61 18.99
    With PACl 1.177 19.63 80.33 18.56
    With N2 & PACl 1.226 20.65 82.87 20.99
    下载: 导出CSV

    表 3  参考组和实验组最佳钙钛矿太阳电池的J-V性能参数

    Table 3.  J-V performance parameters of control and PACl-treated best perovskite solar cells.

    DeviceScan directionVOC/VJSC/(mA·cm–2)FF/%PCE/%
    ControlReverse1.18020.0681.8319.38
    Forward1.17520.0277.5218.24
    PAClReverse1.24620.6183.6421.48
    Forward1.23620.6081.1520.67
    下载: 导出CSV
  • [1]

    Chen H, Liu C, Xu J, Maxwell A, Zhou W, Yang Y, Zhou Q L, Bati A S R, Wan H Y, Wang Z W, Zeng L W, Wang J K, Serles P, Liu Y, Teale S, Liu Y J, Saidaminov M I, Li M Z, Rolston N, Hoogland S, Filleter T, MercouriG. Kanatzidis, Chen B, Ning Z J, Sargent E H 2024 Science 384 189Google Scholar

    [2]

    Chen B, Zheng X P, Bai Y, Padture N P, Huang J S 2017 Adv. Energy Mater. 7 1602400Google Scholar

    [3]

    Jošt M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar

    [4]

    LONGi https://www.longi.com/en/news/2024-snec-silicon-perovskite-tandem-solar-cells-new-world-efficiency/ [2024-6-21]

    [5]

    Jiang Q, Tong J H, Xian Y M, Kerner R A, Dunfield S P, Xiao C X, Scheidt R A, Kuciauskas D, Wang X M, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y F, Zhu K 2022 Nature 611 278Google Scholar

    [6]

    Azmi R, Ugur E, Seitkhan A, Aljamaan F, Subbiah A S, Liu J, Harrison G T, Nugraha M I, Eswaran M K, Babics M, Chen Y, Xu F, Allen T G, Rehman A U, Wang C L, Anthopoulos T D, Schwingenschlögl U, Bastiani M D, Aydin E, Wolf S D 2022 Science 376 73Google Scholar

    [7]

    Chen C, Jiang Y, Feng Y C, Li Z X, Cao N J, Zhou G F, Liu J M, Kempa K, Feng S P, Gao J W 2021 Mater. Today Phys. 21 100565Google Scholar

    [8]

    Huang H H, Liu Q H, Tsai H, Shrestha S, Su L Y, Chen P T, Chen Y T, Yang T A, Lu H, Chuang C H, Lin K F, Rwei S P, Nie W, Wang L 2021 Joule 5 958Google Scholar

    [9]

    Yu Y, Zhang F, Hou T, Sun X, Yu H, Zhang M 2021 Sol. RRL 5 2100386Google Scholar

    [10]

    Zhang X, Qiu W M, Song W Y, Hawash Z, Wang Y X, Pradhan B, Zhang Y Y, Naumenko D, Amenitsch H, Moons E, Merckx T, Aguirre A, Abdulraheem Y, Aernouts T, Zhan Y Q, Kuang Y H, Hofkens J, Poortmans J 2022 Sol. RRL 6 2200053Google Scholar

    [11]

    Szostak R, Sanchez S, Marchezi P E, Marques A S, Silva J C, Holanda M S, Hagfeldt A, Tolentino H C N, Nogueira A F 2020 Adv. Funct. Mater. 31 2007473Google Scholar

    [12]

    Kaczaral S C, Morales D A, Schreiber S W, Martinez D, Conley A M, Herath R, Eperon G E, Choi J J, McGehee M D, Moore D T 2023 APL Energy 1 036112Google Scholar

    [13]

    Liu L, Yang Y, Du M Y, Cao Y X, Ren X D, Zhang L, Wang H, Zhao S, Wang K, Liu S Z 2022 Adv. Energy Mate. 13 2202802Google Scholar

    [14]

    Tong Y, Najar A, Wang L, Liu L, Du M Y, Yang J, Li J X, Wang K, Liu S Z 2022 Adv. Sci. 9 2105085Google Scholar

    [15]

    Nie T, Fang Z M, Ren X D, Duan Y, Liu S Z 2023 Nano-Micro Lett. 15 70Google Scholar

    [16]

    Bush K A, Frohna K, Prasanna R, Beal R E, Leijtens T, Swifter S A, McGehee M D 2018 ACS Energy Lett. 3 428Google Scholar

    [17]

    Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar

    [18]

    Jiang Q, Tong J H, Scheidt R A, Wang X M, Louks A E, Xian Y M, Tirawat R, Palmstrom A F, Hautzinger M P, Harvey S P, Johnston S, Schelhas L T, Larson B W, Warren E L, Beard M C, Berry J J, Yan Y, Zhu K 2022 Science 378 1295Google Scholar

    [19]

    Wen J, Zhao Y C, Liu Z, Gao H, Lin R X, Wan S S, Ji C L, Xiao K, Gao Y, Tian Y X, Xie J, Brabec C J, Tan H R 2022 Adv. Mater. 34 2110356Google Scholar

    [20]

    Kim M J, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [21]

    Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar

    [22]

    Li F Z, Deng X, Shi Z S, Wu S F, Zeng Z X, Wang D, Li Y, Qi F, Zhang Z M, Yang Z B, Jang S H, Lin F R, Tsang S W, Chen X K, Jen A K Y 2023 Nat. Photonics 17 478Google Scholar

    [23]

    Yao Q, Xie Y M, Zhou Y Z, Xue Q F, Xu X, Gao Y J, Niu T Q, Chu L H, Zhou Z S, Lin F R, Jen A K Y, Shi T T, Yip H L, Cao Y 2023 Adv. Funct. Mater. 33 2212599Google Scholar

    [24]

    Qiao L, Ye T S, Wang P S, Wang T, Zhang L, Sun R T, Kong W Y, Yang X D 2023 Adv. Funct. Mater. 34 2308908Google Scholar

    [25]

    Zhang X P, Li X Y, Tao L, Zhang Z M, Ling H, Fu X, Wang S B, Ko M J, Luo J S, Chen J Z, Li Y L 2023 Small 19 2208289Google Scholar

    [26]

    Yao Q, Xue Q F, Li Z C, Zhang K C, Zhang T, Li N, Yang S H, Brabec C J, Yip H L, Cao Y 2020 Adv. Mater. 32 2000571Google Scholar

    [27]

    Bu T L, Ono L K, Li J, Su J, Tong G Q, Zhang W, Liu Y Q, Zhang J H, Chang J J, Kazaoui S, Huang F Z, Cheng Y B, Qi Y B 2022 Nature Energy 7 528Google Scholar

    [28]

    Huang Y, Liang J H, Zhang Z F, Zheng Y T, Wu X Y, Tian C C, Zhou Z, Wang J L, Yang Y J, Sun A X, Liu Y, Tang C, Chen Z H, Chen C C 2022 Small Methods 6 2200933Google Scholar

    [29]

    Yan N, Gao Y, Yang J J, Fang Z M, Feng J S, Wu X J, Chen T, Liu S Z 2023 Angew. Chem. Int. Edit. 62 e202216668Google Scholar

    [30]

    He R, Yi Z J, Luo Y, Luo J C, Wei Q, Lai H G, Huang H, Zou B S, Cui G Y, Wang W W, Xiao C X, Ren S Q, Chen C, Wang C L, Xing G H, Fu F, Zhao D W 2022 Adv. Sci. 9 2203210Google Scholar

    [31]

    Le Corre V M, Duijnstee E A, El Tambouli O, Ball J M, Snaith H J, Lim J, Koster L J A 2021 ACS Energy Lett. 6 1087Google Scholar

  • [1] 张子发, 袁翔, 鹿颖申, 何丹敏, 严全河, 曹浩宇, 洪峰, 蒋最敏, 徐闰, 马忠权, 宋宏伟, 徐飞. 动态热风辅助再结晶策略改善CsPbI2Br钙钛矿在大气环境下的结晶及其光电性能. 物理学报, 2024, 73(9): 098803. doi: 10.7498/aps.73.20240153
    [2] 杨迎国, 冯尚蕾, 李丽娜. 溶液法原位大面积制备钙钛矿光电薄膜成膜的同步辐射可视化结晶过程研究. 物理学报, 2024, 73(6): 063201. doi: 10.7498/aps.73.20231847
    [3] 许畅, 郑德旭, 董心睿, 吴飒建, 武明星, 王开, 刘生忠. 钙钛矿基三结叠层太阳电池的研究进展. 物理学报, 2024, 73(24): 248802. doi: 10.7498/aps.73.20241187
    [4] 王继光, 李珑玲, 邱嘉图, 陈许敏, 曹东兴. 钙钛矿超晶格材料界面二维电子气的调控. 物理学报, 2023, 72(17): 176801. doi: 10.7498/aps.72.20230573
    [5] 王桂强, 王东升, 毕佳宇, 常嘉润, 孟凡宁. 苯基硫脲调控CsPbIBr2钙钛矿结晶及其光电性能. 物理学报, 2023, 72(15): 158801. doi: 10.7498/aps.72.20230593
    [6] 张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉. 迈向效率大于30%的钙钛矿/晶硅叠层太阳能电池技术的研究进展. 物理学报, 2023, 72(5): 058801. doi: 10.7498/aps.72.20222019
    [7] 孙雪, 黄锋, 刘桂雄, 苏子生. 纳米成核点辅助结晶对钙钛矿光电探测器性能的影响. 物理学报, 2022, 71(17): 178102. doi: 10.7498/aps.71.20220189
    [8] 王路, 王菊, 李娜娜, 梁策, 王文丹, 何竹, 刘秀茹. 快速加压引起的硒熔体结晶行. 物理学报, 2021, 70(15): 156201. doi: 10.7498/aps.70.20210253
    [9] 杨俊升, 朱子亮, 曹启龙. 预取向半晶态高分子片晶结构形成微观机理及其应力-应变响应特性的分子动力学模拟. 物理学报, 2020, 69(3): 038101. doi: 10.7498/aps.69.20191191
    [10] 崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹. 宽带隙钙钛矿材料及太阳电池的研究进展. 物理学报, 2020, 69(20): 207401. doi: 10.7498/aps.69.20200822
    [11] 吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义. 钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换. 物理学报, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [12] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [13] 贝帮坤, 王华光, 张泽新. 有限尺寸胶体体系的二维结晶. 物理学报, 2019, 68(10): 106401. doi: 10.7498/aps.68.20190304
    [14] 王理林, 王志军, 林鑫, 王锦程, 黄卫东. 冷却速率对温敏聚N-异丙基丙烯酰胺胶体结晶过程的影响. 物理学报, 2016, 65(10): 106403. doi: 10.7498/aps.65.106403
    [15] 严大东, 张兴华. 聚合物结晶理论进展. 物理学报, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [16] 王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊. 溶剂对钙钛矿薄膜形貌和结晶性的影响研究. 物理学报, 2015, 64(3): 038403. doi: 10.7498/aps.64.038403
    [17] 王其富, 王小霞, 罗积润, 赵青兰. 颗粒状纳米碳酸钡锶钙的研制. 物理学报, 2010, 59(10): 7383-7389. doi: 10.7498/aps.59.7383
    [18] 叶祥熙, 明辰, 胡蕴成, 宁西京. 体材料结晶能力的理论预测. 物理学报, 2009, 58(5): 3293-3301. doi: 10.7498/aps.58.3293
    [19] 刘艳松, 陈 铠, 乔 峰, 黄信凡, 韩培高, 钱 波, 马忠元, 李 伟, 徐 骏, 陈坤基. 尺寸可控的纳米硅的生长模型和实验验证. 物理学报, 2006, 55(10): 5403-5408. doi: 10.7498/aps.55.5403
    [20] 黄 文, 曾慧中, 张 鹰, 蒋书文, 魏贤华, 李言荣. 不同晶化工艺对非晶PZT纳米薄膜形核取向生长机理的影响. 物理学报, 2005, 54(3): 1334-1340. doi: 10.7498/aps.54.1334
计量
  • 文章访问数:  1889
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-23
  • 修回日期:  2024-06-22
  • 上网日期:  2024-06-28
  • 刊出日期:  2024-08-05

/

返回文章
返回