Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of light irradiation stability of functional layers in perovskite solar cells

Li Yan He Hong Dang Wei-Wu Chen Xue-Lian Sun Can Zheng Jia-Lu

Citation:

Research progress of light irradiation stability of functional layers in perovskite solar cells

Li Yan, He Hong, Dang Wei-Wu, Chen Xue-Lian, Sun Can, Zheng Jia-Lu
PDF
HTML
Get Citation
  • The low-cost, high-efficiency and easy fabrication of perovskite solar cells make them an ideal candidate for replacing industrialized silicon solar cells, and thus reforming the current energy supply structure. However, the industrialization of perovskite solar cells is now restricted due to its poor stability. In this article, the intrinsic ion migration behavior in the perovskite film under light irradiation is introduced, which is mainly responsible for hysteresis, fluorescence quenching/enhancement and the failure of solar cell. In addition, the typical ultraviolet light instability of TiO2/perovskite interface, and the light instability of hole transport layer and metal electrodes are also discussed subsequently. As a light-dependent device, improving its light radiation stability is essential for making it suitable to various environmental applications.
      Corresponding author: Li Yan, li1988yan@163.com
    • Funds: Project supported by the Natural Science Foundation Research Project of Shaanxi Province, China (Grant Nos. 2019JQ-286, 2018JQ-5130), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant Nos. 19JK0660, 20JK0507), the State Key Laboratory of Metal Material Strength of Xi'an Jiaotong University, China, the Materials Science and Engineering of Provincial Advantage Disciplines in Xi’an Shiyou University, China (Grant No. YS37020203), and the Postgraduate Innovation and Practical Ability Training Program of Xi'an Shiyou University, China (Grant No. YCS20212115)
    [1]

    万冬云, 黄富强 2011 硅酸盐学报 39 611Google Scholar

    Wan D Y, Huang F Q 2011 J. Chin. Ceram. Soc. 39 611Google Scholar

    [2]

    万福成, 汤富领, 薛红涛, 路文江, 冯煜东, 芮执元 2014 半导体学报 35 024011Google Scholar

    Wan F C, Tang F L, Xue H T, Lu W J, Feng Y D, Rui Z Y 2014 J. Semiconductors 35 024011Google Scholar

    [3]

    任驹, 郑建邦, 赵建林 2007 物理学报 56 2868Google Scholar

    Ren J, Zhen J B, Zhao J L 2007 Acta Phys. Sin. 56 2868Google Scholar

    [4]

    马廷丽 2006 化学进展 18 176Google Scholar

    Ma T L 2006 Prog. Chem. 18 176Google Scholar

    [5]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [6]

    杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 物理学报 64 038404Google Scholar

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar

    [7]

    The National Renewable Energy Laboratory (NREL). https://www.nrel.gov/pv/cell-efficiency.html [2020-9-25]

    [8]

    Business Wire https://financialpost.com/pmn/press-releases-pmn/business-wire-news-releases-pmn/japans-nedo-and-panasonic-achieve-the-worlds-highest-conversion-efficiency-of-16-09-for-largest-area-perovskite-solar-cell-module [2020-8-23]

    [9]

    Yoon S J, Kuno K, Kamat P 2017 ACS Energy Lett. 9 15Google Scholar

    [10]

    Morana M, Wegscheider M, Bonanni A, Kopidakis N, Shaheen S, Scharber M, Zhu Z, Waller D, Gaudiana R, Brabec C 2008 Adv. Funct. Mater. 18 1757Google Scholar

    [11]

    Grancini G, Roldan-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin M K 2017 Nat. Commun. 8 15684Google Scholar

    [12]

    Meng L, You J, Yang Y 2018 Nat. Commun. 9 5265Google Scholar

    [13]

    Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchunangatchaval T, Wheeler S, Durrant J R, Haque S A 2016 Energy Environ. Sci. 9 1655Google Scholar

    [14]

    Lopez-Varo P, Jiménez-Tejada J A, García-Rosell M, Ravishankar S, Garcia-Belmonte G, Bisquert J, Almora O 2018 Adv. Energy Mater. 8 1702772Google Scholar

    [15]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am Chem. Soc. 134 17396Google Scholar

    [16]

    Haruyama J, Sodeyama K, Han L, Tateyama Y 2015 J. Am. Chem. Soc. 137 10048Google Scholar

    [17]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 63903Google Scholar

    [18]

    Yuan Y, Chae J, Shao Y, Wang Q, Xiao Z, Centrone A, Huang J 2015 Adv. Energy Mater. 5 1500615Google Scholar

    [19]

    Yang T Y, Gregori G, Pellet N, Gratzel M, Maier J 2015 Angew. Chem. Int. Ed. Engl. 54 7905Google Scholar

    [20]

    Kim J, Lee S H, Lee J H, Hong K H 2014 J. Phys. Chem. Lett. 5 1312Google Scholar

    [21]

    Mosconi E, Meggiolaro D, Snaith H J, Stranks S D, De Angelis F 2016 Energy Environ. Sci. 9 3180Google Scholar

    [22]

    Wu B, Fu K, Yantara N, Xing G, Sun S, Sum T C, Mathews N 2015 Adv. Energy Mater. 5 1500829Google Scholar

    [23]

    Dong R, Fang Y, Chae J, Dai J, Xiao Z, Dong Q, Yuan Y, Centrone A, Zeng X C, Huang J 2015 Adv. Mater. 27 1912Google Scholar

    [24]

    Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158Google Scholar

    [25]

    Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J 2015 Nat. Mater. 14 193Google Scholar

    [26]

    Kim H S, Park N G 2014 J. Phys. Chem. Lett. 5 2927Google Scholar

    [27]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar

    [28]

    Dualeh A, Moehl T, Tétreault N, Teuscher J L, Gao P, Nazeeruddin M K, Gratzel M 2013 Acs Nano 8 362Google Scholar

    [29]

    Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A, Shield J, Huang J 2016 Energy Environ. Sci. 9 1752Google Scholar

    [30]

    Ke W, Xiao C, Wang C, Saparov B, Duan H S, Zhao D, Xiao Z, Schulz P, Harvey S P, Liao W, Meng W, Yu Y, Cimaroli A J, Jiang C S, Zhu K, Al-Jassim M, Fang G, Mitzi D B, Yan Y 2016 Adv. Mater. 28 5214Google Scholar

    [31]

    Cao K, Li H, Liu S, Cui J, Shen Y, Wang M 2016 Nanoscale 8 8839Google Scholar

    [32]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar

    [33]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [34]

    Jacobs D L, Scarpulla M A, Wang C, Bunes B R, Zang L 2016 J. Phys. Chem. C 120 7893Google Scholar

    [35]

    Leijtens T, Hoke E T, Grancini G, Slotcavage D J, Eperon G E, Ball J M, De Bastiani M, Bowring A R, Martino N, Wojciechowski K, McGehee M D, Snaith H J, Petrozza A 2015 Adv. Energy Mater. 5 15451Google Scholar

    [36]

    Choi J J, Yang X, Norman Z M, Billinge S J, Owen J S 2014 Nano Lett. 14 127Google Scholar

    [37]

    Li Y, Shi J, Yu B, Duan B, Wu J, Li H, Li D, Luo Y, Wu H, Meng Q 2020 Joule 4 472Google Scholar

    [38]

    Xiao J Y, Shi J J, Li D M, Meng Q B 2015 Sci. China Chem. 58 221Google Scholar

    [39]

    Wang H, Whittaker-Brooks L, Fleming G R 2015 J. Phys. Chem. C 119 19590Google Scholar

    [40]

    Frost J M, Walsh A 2016 Acc. Chem. Res. 49 528Google Scholar

    [41]

    Yang B, Dyck O, Poplawsky J, Keum J, Puretzky A, Das S, Ivanov I, Rouleau C, Duscher G, Geohegan D, Xiao K 2015 J. Am. Chem. Soc. 137 9210Google Scholar

    [42]

    Srimath Kandada A R, Petrozza A 2016 Acc. Chem. Res. 49 536Google Scholar

    [43]

    Herz L M 2016 Annu. Rev. Phys. Chem. 67 65Google Scholar

    [44]

    Zhu X Y, Podzorov V 2015 J. Phys. Chem. Lett. 6 4758Google Scholar

    [45]

    Christians J A, Manser J S, Kamat P V 2015 J. Phys. Chem. Lett. 6 2086Google Scholar

    [46]

    Yuan Y, Huang J 2016 Acc. Chem. Res. 49 286Google Scholar

    [47]

    Eames C, Frost J M, Barnes P R, O'Regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar

    [48]

    Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar

    [49]

    DeQuilettes D W, Zhang W, Burlakov V M, Graham D J, Leijtens T, Osherov A, Bulovic V, Snaith H J, Ginger D S, Stranks S D 2016 Nat. Commun. 7 11683Google Scholar

    [50]

    Azpiroz J M, Mosconi E, Bisquert J, De Angelis F 2015 Energy Environ. Sci. 8 2118Google Scholar

    [51]

    Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano. Lett. 14 6281Google Scholar

    [52]

    Galisteo-Lopez J F, Li Y, Miguez H 2016 J. Phys. Chem. Lett. 7 5227Google Scholar

    [53]

    Zhang T, Hu C, Yang S 2019 Small Methods 4 1900552Google Scholar

    [54]

    Birkhold S T, Precht J T, Liu H, Giridharagopal R, Eperon G E, Schmidt-Mende L, Li X, Ginger D S 2018 ACS Energy Lett. 3 1279Google Scholar

    [55]

    Walsh A, Scanlon D O, Chen S, Gong X G, Wei S-H 2015 Angew. Chem. 127 1811Google Scholar

    [56]

    Pockett A, Eperon G E, Sakai N, Snaith H J, Peter L M, Cameron P J 2017 Phys. Chem. Chem. Phys. 19 5959Google Scholar

    [57]

    Domanski K, Roose B, Matsui T, Saliba M, Turren-Cruz S-H, Correa-Baena J-P, Carmona C R, Richardson G, Foster J M, De Angelis F, Ball J M, Petrozza A, Mine N, Nazeeruddin M K, Tress W, Grätzel M, Steiner U, Hagfeldt A, Abate A 2017 Energy Environ. Sci. 10 604Google Scholar

    [58]

    Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M 2015 Energy Environ. Sci. 8 995Google Scholar

    [59]

    Unger E L, Hoke E T, Bailie C D, Nguyen W H, Bowring A R, Heumüller T, Christoforo M G, McGehee M D 2014 Energy Environ. Sci. 7 3690Google Scholar

    [60]

    Zhang T, Chen H N, Bai Y, Xiao S, Zhu L, Hu C, Xue Q Z, Yang S H 2016 Nano Energy 26 620Google Scholar

    [61]

    Sanchez R S, Gonzalez-Pedro V, Lee J W, Park N G, Kang Y S, Mora-Sero I, Bisquert J L 2014 J. Phys. Chem. Lett. 13 2357Google Scholar

    [62]

    Jung H J, Kim D, Kim S, Park J, Dravid P, Shin B 2018 Adv. Mater. 30 1802769Google Scholar

    [63]

    Girolamo D, Matteocci F, Kosasih F U, Chistiakova G, Weiwei Zuo G D, Lars Korte C D, Aldo Di Carlo D D, Abate A 2019 Adv. Energy Mater. 9 1901642Google Scholar

    [64]

    Panzer F, Li C, Meier T, Köhler A, Huettner S 2017 Adv. Energy Mater. 7 1700286Google Scholar

    [65]

    Leijtens T, Srimath Kandada A R, Eperon G E, Grancini G, D'Innocenzo V, Ball J M, Stranks S D, Snaith H J, Petrozza A 2015 J. Am. Chem. Soc. 137 15451Google Scholar

    [66]

    Chen S, Wen X, Huang S, Huang F, Cheng Y-B, Green M, Ho-Baillie A 2017 Solar RRL 1 1600001Google Scholar

    [67]

    Xu Z, De Rosia T, Weeks C 2017 J. Phys. Chem. C 9 130Google Scholar

    [68]

    Deng X, Wen X, Lau C F J, Young T, Yun J, Green M A, Huang S, Ho-Baillie A W Y 2016 J. Phys. Chem. C 4 9060Google Scholar

    [69]

    Chen S, Wen X, Sheng R, Huang S, Deng X, Green M A, Ho-Baillie A 2016 ACS Appl. Mater. Inter. 8 5351Google Scholar

    [70]

    Lan D 2019 Prog. Photovoltaics 28 6Google Scholar

    [71]

    Miyano K, Yanagida M, Shirai Y 2020 Adv. Energy Mater. 2 1903097Google Scholar

    [72]

    Di Girolamo D, Phung N, Kosasih F U, Di Giacomo F, Matteocci F, Smith J A, Flatken M A, Köbler H, Turren Cruz S H, Mattoni A, Cinà L, Rech B, Latini A, Divitini G, Ducati C, Di Carlo A, Dini D, Abate A 2020 Adv. Energy Mater. 10 2000310Google Scholar

    [73]

    You J, Yang Y, Hong Z, Song T B, Meng L, Liu Y, Jiang C, Zhou H, Chang W H, Li G, Yang Y 2014 Appl. Phys. Lett 18 183902Google Scholar

    [74]

    Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M 2016 Nat. Commun. 7 13422Google Scholar

    [75]

    Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S, Haque S A 2017 Nat. Commun. 8 15218Google Scholar

    [76]

    Abdelmageed G, Jewell L, Hellier K, Seymour L, Luo B, Bridges F, Zhang J Z, Carter S 2016 Appl. Phys. Lett. 109 233095Google Scholar

    [77]

    Konrad W 2014 ACS Nano 12 8Google Scholar

    [78]

    Jeangros Q, Duchamp M, Werner J, Kruth M, Dunin-Borkowski R E, Niesen B, Ballif C, Hessler-Wyser A 2016 Nano Lett. 16 7013Google Scholar

    [79]

    Liu Z, Zeng D, Gao X, Li P, Zhang Q, Peng X 2019 Sol. Energy Mater. Sol. C 189 103Google Scholar

    [80]

    Li C, Guerrero A, Zhong Y, Graser A, Luna C A M, Kohler J, Bisquert J, Hildner R, Huettner S 2017 Small 13 1701711Google Scholar

    [81]

    Dong Q, Liu F, Wong M K, Tam H W, Djurisic A B, Ng A, Surya C, Chan W K, Ng A M 2016 ChemSusChem 9 2597Google Scholar

    [82]

    Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J 2018 Nat. Energy 3 560Google Scholar

    [83]

    Wu W Q, Wang Q, Fang Y, Shao Y, Tang S, Deng Y, Lu H, Liu Y, Li T, Yang Z, Gruverman A, Huang J 2018 Nat. Commun. 9 1625Google Scholar

    [84]

    Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell J J, Kanjanaboos P, Sun J P, Lan X, Quan L N, Kim D H, Hill I G, Maksymovych P, Sargent E H 2015 Nat. Commun. 6 7081Google Scholar

    [85]

    Bi D, Gao P, Scopelliti R, Oveisi E, Luo J, Gratzel M, Hagfeldt A, Nazeeruddin M K 2016 Adv. Mater. 28 2910Google Scholar

    [86]

    Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J 2014 Energy Environ. Sci. 7 2359Google Scholar

    [87]

    Yang B, Brown C C, Huang J, Collins L, Sang X, Unocic R R, Jesse S, Kalinin S V, Belianinov A, Jakowski J, Geohegan D B, Sumpter B G, Xiao K, Ovchinnikova O S 2017 Adv. Funct. Mater. 27 1700749Google Scholar

    [88]

    Xing J, Wang Q, Dong Q, Yuan Y, Fang Y, Huang J 2016 Phys. Chem. Chem. Phys. 18 30484Google Scholar

    [89]

    Chen J, Lee D, Park N G 2017 ACS Appl. Mater. Inter. 9 36338Google Scholar

    [90]

    Wang Z, Lin Q, Chmiel F P, Sakai N, Herz L M, Snaith H J 2017 Nat. Energy 2 1700749Google Scholar

    [91]

    Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, De Marco N, Zhao H, Sun P, Huang Y, Yang Y 2018 Nat. Commun. 9 3021Google Scholar

    [92]

    Xiao X, Dai J, Fang Y, Zhao J, Zheng X, Tang S, Rudd P N, Zeng X C, Huang J 2018 ACS Energy Lett. 3 684Google Scholar

    [93]

    Umeyama T, Imahori H, Murugadoss G, Tanaka S, Mizuta G, Kanaya S, Nishino H, Ito S 2015 Japan. J. Appl. Phys. 54 8Google Scholar

    [94]

    Mosconi E, Grancini G, Roldán-Carmona C, Gratia P, Zimmermann I, Nazeeruddin M K, De Angelis F 2016 Chem. Mater. 28 3612Google Scholar

    [95]

    Lee S W, Kim S, Bae S, Cho K, Chung T, Mundt L E, Lee S, Park S, Park H, Schubert M 2016 Sci. Rep. 6 38150Google Scholar

    [96]

    Li Y, Li Y, Shi J, Li H, Zhang H, Wu J, Li D, Luo Y, Wu H, Meng Q J 2018 Appl. Phys. Lett. 112 053904Google Scholar

    [97]

    Farooq A, Hossain, Ihteaz M, Moghadamzadeh, Somayeh, Schwenzer, Jonas A, Abzieher 2018 ACS Appl. Mater. Inter. 10 21985Google Scholar

    [98]

    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323Google Scholar

    [99]

    Jin J, Li H, Chen C, Zhang B, Bi W, Song Z, Xu L, Dong B, Song H, Dai Q 2018 ACS Appl. Energy Mater. 1 2096Google Scholar

    [100]

    Wang Q, Zhang X, Jin Z, Zhang J, Gao Z, Li Y, Liu S F 2017 ACS Energy Lett. 2 1479Google Scholar

    [101]

    You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y 2016 Nat. Nanotechnol. 11 75Google Scholar

    [102]

    Carnie M J, Charbonneau C, Davies M L, Troughton J, Watson T M, Wojciechowski K, Snaith H, Worsley D A 2013 Chem. Commun. (Camb) 49 7893Google Scholar

    [103]

    Wang C, Guan L, Zhao D, Yu Y, Grice C R, Song Z, Awni R A, Chen J, Wang J, Zhao X, Yan Y 2017 ACS Energy Lett. 2 2118Google Scholar

    [104]

    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J 2016 Nat. Energy 2 16177Google Scholar

    [105]

    Wang Z, Kamarudin A, Huey C, Yang F, Pandey M, Kapil G, Ma T, Hayase S 2018 ChemSusChem 11 3941Google Scholar

    [106]

    Hu M, Zhang L, She S, Wu J, Zhou X, Li X, Wang D, Miao J, Mi G, Chen H, Tian Y, Xu B, Cheng C 2020 Sol. Rrl. 4 2070014Google Scholar

    [107]

    Sidhik S, Panikar S S, Pérez C R, Luke T L, Carriles R, Carrera S C, De la Rosa E 2018 ACS Sus. Chem. Eng. 6 15391Google Scholar

    [108]

    Shih Y C, Lan Y B, Li C S, Hsieh H C, Wang L, Wu C I, Lin K F 2017 Small 13 36338Google Scholar

    [109]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. C. 118 16651Google Scholar

    [110]

    Zhou Q, Liu X, Luo W, Shen J, Wei D, Wang Y 2018 Mater. Res. Express. 5 3Google Scholar

    [111]

    Zhang L, Rao H, Pan Z, Zhong X 2019 ACS Appl. Mater. Inter. 84 234Google Scholar

    [112]

    Lee Y H, Luo J, Son M K, Gao P, Cho K T, Seo J, Zakeeruddin S M, Tzel M, Nazeeruddin M 2016 Adv. Mater. 28 10124Google Scholar

    [113]

    Abrusci A, Stranks S D, Docampo P, Yip H L, Snaith H J 2013 Nano Lett. 7 3124Google Scholar

    [114]

    Hwang I, Baek M, Yong K J 2015 ACS Appl. Mater. Inter. 50 27863Google Scholar

    [115]

    Cao J, Yin J, Yuan S, Zhao Y, Zheng N 2015 Nanoscale 7 9443Google Scholar

    [116]

    Wang L Y, Dong H, Wang L 2014 Rsc. Adv. 9 10123Google Scholar

    [117]

    Li W, Zhang W, Van Reenen S, Sutton R J, Fan J, Haghighirad A Johnston M B, Wang L, Snaith H J 2016 Energy Environ. Sci. 9 490Google Scholar

    [118]

    Seo J Y, Uchida R, Kim H S, Saygili Y, Luo J, Moore C, Kerrod J, Wagstaff A, Eklund M, Mcintyre R 2018 Adv. Funct. Mater. 28 1705763Google Scholar

    [119]

    Sanchez R S, Mas-Marza E 2016 Sol. Energy Mater. Sol. C. 158 189Google Scholar

    [120]

    Jena A K, Numata Y, Ikegami M, Miyasaka T 2018 J. Mater. Chem. A 6 2219Google Scholar

    [121]

    Matteocci F, Cinà L, Lamanna E, Cacovich S, Divitini G, Midgley P A, Ducati C, Di Carlo A 2016 Nano Energy 30 162Google Scholar

    [122]

    Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J 2014 Nano Lett. 14 5561Google Scholar

    [123]

    Jung M, Kim Y C, Jeon N J, Yang W S, Seo J, Noh J H, Seok S 2016 ChemSusChem 9 2592Google Scholar

    [124]

    Liu J, Pathak S K, Sakai N, Sheng R, Bai S, Wang Z, Snaith H J 2016 Adv. Mater. Inter. 3 1600571Google Scholar

    [125]

    Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L 2014 Energy Environ. Sci. 7 2963Google Scholar

    [126]

    Li J W, Dong Q S, Li N, Wang L D 2017 Adv. Energy Mater. 14 1602922Google Scholar

    [127]

    Ming W, Yang D, Li T, Zhang L, Du M H 2018 Adv. Sci. 5 1700662Google Scholar

    [128]

    Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Graetzel M J E 2017 Science 358 768Google Scholar

    [129]

    Shao F, Tian Z, Qin P, Bu K, Zhao W, Xu L, Wang D, Huang F 2018 Sci. Rep. 8 7033Google Scholar

    [130]

    Yang Y, Xiao J, Wei H, Zhu L, Li D, Luo Y, Wu H, Meng Q 2014 RSC Adv. 4 52825Google Scholar

    [131]

    Zhang F, Yang X, Cheng M, Wang W, Sun L 2016 Nano Energy 20 108Google Scholar

    [132]

    Liu Z, Zhang M, Xu X, Bu L, Zhang W, Li W, Zhao Z, Wang M, Cheng Y B, He H 2015 Dalton. Trans. 44 3967Google Scholar

  • 图 1  PSCs的(a)正向和(c)反向基本结构; (b)钙钛矿材料的晶体结构; 在(d)短路和(e)开路状态下PSCs内部的能级结构; (f) PSCs不稳定的主要诱因示意图[14]

    Figure 1.  Basic structure of PSCs in (a) regular and (c) inverted configurations; (b) crystalline structure of perovskite materials; general energy band diagram at (d) short circuit and (e) open circuit; (f) main contributing factors in the degradation processes of PSCs[14].

    图 2  PSCs内部电荷-载流子动力学过程 (a)载流子动力学过程; (b)动力学过程发生的时间尺度[37]

    Figure 2.  General charge-carrier processes within a PSC: (a) Carrier dynamics processes; (b) corresponding time scale of the cell[37].

    图 3  ABX3钙钛矿晶体结构的变化 (a), (b)标准钙钛矿结构; (c) BX6八面体的扭曲和旋转引起的结构变化; (d)—(f)过大的A位原子对钙钛矿结构的破坏[38]

    Figure 3.  Structure of the ABX3: (a), (b) Standard perovskite structure; (c) structural changes caused by the twist and rotation of BX6 octahedron; (d)–(f) destruction of perovskite structure by too large A atom[38].

    图 4  固定电压下PSCs内部的能级结构对齐关系 (a)和(b)正向扫描; (c)和(d)反向扫描; 其中(a)和(c)不考虑离子迁移行为, (b)和(d)考虑离子迁移行为[60]

    Figure 4.  Schematic illustration of the ion migration: (a) and (b) Electronic band structure alignments of the PSCs at a fixed bias under forward scan; (c) and (d) reverse scan; (a) and (c) without, (b) and (d) with consideration of ion migration[60].

    图 5  离子和电子分布示意图(左侧)和相应的能级分布(右侧) (a)黑暗中; (b)光照的瞬间; (c)光辐照一段时间后; 其中, 红色阴影区域为耗尽区域, 阴影等级表示电场强度, 由于光照下产生的内建电场, 图(b)和(c)中耗尽区域宽度逐渐减小, 在图(b)中, 左侧的虚线箭头代表离子迁移到平衡状态之前, 电子和空穴在萎缩的耗尽层区域的重新分布, 与此同时能带的弯曲减少了对外的静电流[70]

    Figure 5.  Schematics of ionic and electronic carrier distributions (left) and corresponding band diagrams (right) for three situations of interest: (a) Dark equilibrium; (b) immediately after light turns on; (c) after prolonged illumination. Where the red-color shaded region is the depletion region with the shade grading indicating the electric field strength, note that the depletion region width reduces in panel (b) and (c), because of photovoltage bulid-up after illumination; in panel (b), dashed arrows on the left indicate redistribution of electrons and holes upon the shrinkage of the depletion region but before ions move to new equilibriums, while distortion of the band diagram on the right results in a reduction in the net currents[70].

    图 6  光曝后碘的重新分布现象 (a)不同光曝时间下MAPbI3薄膜的瞬态荧光淬灭结果, 其中脉冲激发光源为470 nm, 1.2 kJ/cm2; (b) ToF-SIMS采集的钙钛矿薄膜内碘元素在深度方向的信息, 标尺为10 μm; (c)是对图(b)中蓝线区域碘分布的线扫描结果(右轴), 照明激光的空间轮廓测试结果被显示在左轴[49]

    Figure 6.  Iodide redistribution after light soaking: (a) A series of time resolved photoluminescence decays from a MAPbI3 film measured over time under illumination before ToF-SIMS measurements, and the sample was photoexcited with pulsed excitation (470 nm, 1.2 kJ/cm2); (b) ToF-SIMS image of the iodide (I) distribution summed through the film depth (the image has been adjusted to show maximum contrast), scale bar, 10 μm; (c) line scan of the blue arrow in panel (b) to show the iodide distribution (right axis), where the measured spatial profile of the illumination laser (blue) is shown on the left axis[49].

    图 7  SKPM在MAPbI3/Au (a)−(c)和MAPbI3/PMMA/SiO2/Au (d)−(f)电极界面的单线扫描结果 (a)和(d)从左侧为两类样品加上+9 V的偏压; (b), (c), (e)和(f)是关掉+9 V正向偏压后接地; (g)是去掉+9 V偏压后MAPbI3/PMMA/SiO2/Au样品中的电荷密度分布; (h)是去掉偏压后, 两类样品中电子和离子的分布示意图[54]

    Figure 7.  SKPM scan of a single line within the electrode gap of (a)−(c) MAPbI3/Au and (d)−(f) MAPbI3/PMMA/SiO2/Au, measured (a), (d) with a +9 V bias applied to the right electrode and (b), (c), (e), (f) at 0 V bias after turning off the +9 V bias; the black line in (b) displays the SKPM CPD signal prior to biasing; (g) charge density in MAPbI3/PMMA/SiO2/Au after bias; (h) illustration of electronic and ionic charge distribution after electric biasing[54].

    图 8  在Pb/MAPbI3/AgI/Ag电池中(a)电场作用下带电离子的流动方向; (b)电池A, B面的图片; (c) B面的SEM图片; (d)在10 nA直流电下服役1周后A, B两面的XRD; (e) B面Pb元素的EDS[19]

    Figure 8.  (a) Flow directions of the charged ion species in a Pb/MAPbI3/AgI/Ag cell under electrical bias; (b) images for surfaces A and B; (c) SEM image of surface B on the Pb pellet; (d) XRD patterns of surfaces A and B of the Pb disk after applying a direct current of 10 nA for a week; (e) EDS spectrum for surface B of Pb[19].

    图 9  紫外线照射下TiO2材料的光催化(a)−(d)行为及机理(TiO2材料中存在大量缺陷, 通过吸附和脱附O2分子的过程, 形成深能级缺陷Ti4+, 它通过从卤素负离子中提取电子的方式破坏了钙钛矿结构的电平衡)[98]

    Figure 9.  Photocatalysis of TiO2 material under UV illumination: (a)−(d) there are abundant defects in TiO2 material. During the absorption and deabsorption of the O2 molecular, the positive charge (Ti4+) is formed, which will extract electrons from halogen negative ions, thus destroying the electrical balance of perovskite structure[98].

    图 10  不同温度下(a) CsBr钝化后的电池和(b)无CsBr钝化的电池的界面电容数值; (c) CsBr钝化后的电池和(d)无CsBr钝化的电池在特定测试频率下的Arrhenius点, 基于此可获得缺陷的活化能[117]

    Figure 10.  Temperature dependence of capacitance for (a) device with CsBr and (b) control device without CsBr. Arrhenius plot of the characteristic frequencies to extract the defect activation energy for (c) device with CsBr and (d) control device without CsBr[117].

    图 11  在(a) 85 ℃下24 h处理之前和(b)处理之后, 断面内ToF-SIMS测试的元素分布; (c)热处理后不同温度下断面内Ag, I和CN分布[126]

    Figure 11.  ToF-SIMS elemental depth profiles (a) before and (b) after a thermal treatment at 85 ℃ for 24 h; (c) depth profiles of Ag, I and CN after different temperature of thermal treatment[126].

    表 1  钙钛矿材料的离子活化能

    Table 1.  Ion activation energy of the perovskite material

    材料迁移离子EA/eV文献
    MAPbI3I0.58[47]
    Pb2+2.31
    MA+0.84
    MAPbI3I0.19 ± 0.05[49]
    MAPbI3I0.1[50]
    Pb2+0.8
    MA+0.5
    MAPbI3I0.33[16]
    MA+0.55
    MAPbI3MA+0.36[18]
    MAPbI3$ {\rm{I}}_{\rm{i}}^{0} $0.06[21]
    $ {\rm{I}}_{\rm{i}}^{-} $0.08
    $ {\rm{I}}_{\rm{i}}^{-} $(e/h)0.05
    $ {\rm{V}}_{\rm{I}}^{0} $0.15
    $ {\rm{V}}_{\rm{I}}^{+} $0.09
    $ {\rm{V}}_{\rm{I}}^{+} $(e/h)0.15
    DownLoad: CSV
  • [1]

    万冬云, 黄富强 2011 硅酸盐学报 39 611Google Scholar

    Wan D Y, Huang F Q 2011 J. Chin. Ceram. Soc. 39 611Google Scholar

    [2]

    万福成, 汤富领, 薛红涛, 路文江, 冯煜东, 芮执元 2014 半导体学报 35 024011Google Scholar

    Wan F C, Tang F L, Xue H T, Lu W J, Feng Y D, Rui Z Y 2014 J. Semiconductors 35 024011Google Scholar

    [3]

    任驹, 郑建邦, 赵建林 2007 物理学报 56 2868Google Scholar

    Ren J, Zhen J B, Zhao J L 2007 Acta Phys. Sin. 56 2868Google Scholar

    [4]

    马廷丽 2006 化学进展 18 176Google Scholar

    Ma T L 2006 Prog. Chem. 18 176Google Scholar

    [5]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [6]

    杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 物理学报 64 038404Google Scholar

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar

    [7]

    The National Renewable Energy Laboratory (NREL). https://www.nrel.gov/pv/cell-efficiency.html [2020-9-25]

    [8]

    Business Wire https://financialpost.com/pmn/press-releases-pmn/business-wire-news-releases-pmn/japans-nedo-and-panasonic-achieve-the-worlds-highest-conversion-efficiency-of-16-09-for-largest-area-perovskite-solar-cell-module [2020-8-23]

    [9]

    Yoon S J, Kuno K, Kamat P 2017 ACS Energy Lett. 9 15Google Scholar

    [10]

    Morana M, Wegscheider M, Bonanni A, Kopidakis N, Shaheen S, Scharber M, Zhu Z, Waller D, Gaudiana R, Brabec C 2008 Adv. Funct. Mater. 18 1757Google Scholar

    [11]

    Grancini G, Roldan-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin M K 2017 Nat. Commun. 8 15684Google Scholar

    [12]

    Meng L, You J, Yang Y 2018 Nat. Commun. 9 5265Google Scholar

    [13]

    Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchunangatchaval T, Wheeler S, Durrant J R, Haque S A 2016 Energy Environ. Sci. 9 1655Google Scholar

    [14]

    Lopez-Varo P, Jiménez-Tejada J A, García-Rosell M, Ravishankar S, Garcia-Belmonte G, Bisquert J, Almora O 2018 Adv. Energy Mater. 8 1702772Google Scholar

    [15]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am Chem. Soc. 134 17396Google Scholar

    [16]

    Haruyama J, Sodeyama K, Han L, Tateyama Y 2015 J. Am. Chem. Soc. 137 10048Google Scholar

    [17]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 63903Google Scholar

    [18]

    Yuan Y, Chae J, Shao Y, Wang Q, Xiao Z, Centrone A, Huang J 2015 Adv. Energy Mater. 5 1500615Google Scholar

    [19]

    Yang T Y, Gregori G, Pellet N, Gratzel M, Maier J 2015 Angew. Chem. Int. Ed. Engl. 54 7905Google Scholar

    [20]

    Kim J, Lee S H, Lee J H, Hong K H 2014 J. Phys. Chem. Lett. 5 1312Google Scholar

    [21]

    Mosconi E, Meggiolaro D, Snaith H J, Stranks S D, De Angelis F 2016 Energy Environ. Sci. 9 3180Google Scholar

    [22]

    Wu B, Fu K, Yantara N, Xing G, Sun S, Sum T C, Mathews N 2015 Adv. Energy Mater. 5 1500829Google Scholar

    [23]

    Dong R, Fang Y, Chae J, Dai J, Xiao Z, Dong Q, Yuan Y, Centrone A, Zeng X C, Huang J 2015 Adv. Mater. 27 1912Google Scholar

    [24]

    Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158Google Scholar

    [25]

    Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J 2015 Nat. Mater. 14 193Google Scholar

    [26]

    Kim H S, Park N G 2014 J. Phys. Chem. Lett. 5 2927Google Scholar

    [27]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar

    [28]

    Dualeh A, Moehl T, Tétreault N, Teuscher J L, Gao P, Nazeeruddin M K, Gratzel M 2013 Acs Nano 8 362Google Scholar

    [29]

    Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A, Shield J, Huang J 2016 Energy Environ. Sci. 9 1752Google Scholar

    [30]

    Ke W, Xiao C, Wang C, Saparov B, Duan H S, Zhao D, Xiao Z, Schulz P, Harvey S P, Liao W, Meng W, Yu Y, Cimaroli A J, Jiang C S, Zhu K, Al-Jassim M, Fang G, Mitzi D B, Yan Y 2016 Adv. Mater. 28 5214Google Scholar

    [31]

    Cao K, Li H, Liu S, Cui J, Shen Y, Wang M 2016 Nanoscale 8 8839Google Scholar

    [32]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar

    [33]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [34]

    Jacobs D L, Scarpulla M A, Wang C, Bunes B R, Zang L 2016 J. Phys. Chem. C 120 7893Google Scholar

    [35]

    Leijtens T, Hoke E T, Grancini G, Slotcavage D J, Eperon G E, Ball J M, De Bastiani M, Bowring A R, Martino N, Wojciechowski K, McGehee M D, Snaith H J, Petrozza A 2015 Adv. Energy Mater. 5 15451Google Scholar

    [36]

    Choi J J, Yang X, Norman Z M, Billinge S J, Owen J S 2014 Nano Lett. 14 127Google Scholar

    [37]

    Li Y, Shi J, Yu B, Duan B, Wu J, Li H, Li D, Luo Y, Wu H, Meng Q 2020 Joule 4 472Google Scholar

    [38]

    Xiao J Y, Shi J J, Li D M, Meng Q B 2015 Sci. China Chem. 58 221Google Scholar

    [39]

    Wang H, Whittaker-Brooks L, Fleming G R 2015 J. Phys. Chem. C 119 19590Google Scholar

    [40]

    Frost J M, Walsh A 2016 Acc. Chem. Res. 49 528Google Scholar

    [41]

    Yang B, Dyck O, Poplawsky J, Keum J, Puretzky A, Das S, Ivanov I, Rouleau C, Duscher G, Geohegan D, Xiao K 2015 J. Am. Chem. Soc. 137 9210Google Scholar

    [42]

    Srimath Kandada A R, Petrozza A 2016 Acc. Chem. Res. 49 536Google Scholar

    [43]

    Herz L M 2016 Annu. Rev. Phys. Chem. 67 65Google Scholar

    [44]

    Zhu X Y, Podzorov V 2015 J. Phys. Chem. Lett. 6 4758Google Scholar

    [45]

    Christians J A, Manser J S, Kamat P V 2015 J. Phys. Chem. Lett. 6 2086Google Scholar

    [46]

    Yuan Y, Huang J 2016 Acc. Chem. Res. 49 286Google Scholar

    [47]

    Eames C, Frost J M, Barnes P R, O'Regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar

    [48]

    Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar

    [49]

    DeQuilettes D W, Zhang W, Burlakov V M, Graham D J, Leijtens T, Osherov A, Bulovic V, Snaith H J, Ginger D S, Stranks S D 2016 Nat. Commun. 7 11683Google Scholar

    [50]

    Azpiroz J M, Mosconi E, Bisquert J, De Angelis F 2015 Energy Environ. Sci. 8 2118Google Scholar

    [51]

    Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano. Lett. 14 6281Google Scholar

    [52]

    Galisteo-Lopez J F, Li Y, Miguez H 2016 J. Phys. Chem. Lett. 7 5227Google Scholar

    [53]

    Zhang T, Hu C, Yang S 2019 Small Methods 4 1900552Google Scholar

    [54]

    Birkhold S T, Precht J T, Liu H, Giridharagopal R, Eperon G E, Schmidt-Mende L, Li X, Ginger D S 2018 ACS Energy Lett. 3 1279Google Scholar

    [55]

    Walsh A, Scanlon D O, Chen S, Gong X G, Wei S-H 2015 Angew. Chem. 127 1811Google Scholar

    [56]

    Pockett A, Eperon G E, Sakai N, Snaith H J, Peter L M, Cameron P J 2017 Phys. Chem. Chem. Phys. 19 5959Google Scholar

    [57]

    Domanski K, Roose B, Matsui T, Saliba M, Turren-Cruz S-H, Correa-Baena J-P, Carmona C R, Richardson G, Foster J M, De Angelis F, Ball J M, Petrozza A, Mine N, Nazeeruddin M K, Tress W, Grätzel M, Steiner U, Hagfeldt A, Abate A 2017 Energy Environ. Sci. 10 604Google Scholar

    [58]

    Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M 2015 Energy Environ. Sci. 8 995Google Scholar

    [59]

    Unger E L, Hoke E T, Bailie C D, Nguyen W H, Bowring A R, Heumüller T, Christoforo M G, McGehee M D 2014 Energy Environ. Sci. 7 3690Google Scholar

    [60]

    Zhang T, Chen H N, Bai Y, Xiao S, Zhu L, Hu C, Xue Q Z, Yang S H 2016 Nano Energy 26 620Google Scholar

    [61]

    Sanchez R S, Gonzalez-Pedro V, Lee J W, Park N G, Kang Y S, Mora-Sero I, Bisquert J L 2014 J. Phys. Chem. Lett. 13 2357Google Scholar

    [62]

    Jung H J, Kim D, Kim S, Park J, Dravid P, Shin B 2018 Adv. Mater. 30 1802769Google Scholar

    [63]

    Girolamo D, Matteocci F, Kosasih F U, Chistiakova G, Weiwei Zuo G D, Lars Korte C D, Aldo Di Carlo D D, Abate A 2019 Adv. Energy Mater. 9 1901642Google Scholar

    [64]

    Panzer F, Li C, Meier T, Köhler A, Huettner S 2017 Adv. Energy Mater. 7 1700286Google Scholar

    [65]

    Leijtens T, Srimath Kandada A R, Eperon G E, Grancini G, D'Innocenzo V, Ball J M, Stranks S D, Snaith H J, Petrozza A 2015 J. Am. Chem. Soc. 137 15451Google Scholar

    [66]

    Chen S, Wen X, Huang S, Huang F, Cheng Y-B, Green M, Ho-Baillie A 2017 Solar RRL 1 1600001Google Scholar

    [67]

    Xu Z, De Rosia T, Weeks C 2017 J. Phys. Chem. C 9 130Google Scholar

    [68]

    Deng X, Wen X, Lau C F J, Young T, Yun J, Green M A, Huang S, Ho-Baillie A W Y 2016 J. Phys. Chem. C 4 9060Google Scholar

    [69]

    Chen S, Wen X, Sheng R, Huang S, Deng X, Green M A, Ho-Baillie A 2016 ACS Appl. Mater. Inter. 8 5351Google Scholar

    [70]

    Lan D 2019 Prog. Photovoltaics 28 6Google Scholar

    [71]

    Miyano K, Yanagida M, Shirai Y 2020 Adv. Energy Mater. 2 1903097Google Scholar

    [72]

    Di Girolamo D, Phung N, Kosasih F U, Di Giacomo F, Matteocci F, Smith J A, Flatken M A, Köbler H, Turren Cruz S H, Mattoni A, Cinà L, Rech B, Latini A, Divitini G, Ducati C, Di Carlo A, Dini D, Abate A 2020 Adv. Energy Mater. 10 2000310Google Scholar

    [73]

    You J, Yang Y, Hong Z, Song T B, Meng L, Liu Y, Jiang C, Zhou H, Chang W H, Li G, Yang Y 2014 Appl. Phys. Lett 18 183902Google Scholar

    [74]

    Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M 2016 Nat. Commun. 7 13422Google Scholar

    [75]

    Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S, Haque S A 2017 Nat. Commun. 8 15218Google Scholar

    [76]

    Abdelmageed G, Jewell L, Hellier K, Seymour L, Luo B, Bridges F, Zhang J Z, Carter S 2016 Appl. Phys. Lett. 109 233095Google Scholar

    [77]

    Konrad W 2014 ACS Nano 12 8Google Scholar

    [78]

    Jeangros Q, Duchamp M, Werner J, Kruth M, Dunin-Borkowski R E, Niesen B, Ballif C, Hessler-Wyser A 2016 Nano Lett. 16 7013Google Scholar

    [79]

    Liu Z, Zeng D, Gao X, Li P, Zhang Q, Peng X 2019 Sol. Energy Mater. Sol. C 189 103Google Scholar

    [80]

    Li C, Guerrero A, Zhong Y, Graser A, Luna C A M, Kohler J, Bisquert J, Hildner R, Huettner S 2017 Small 13 1701711Google Scholar

    [81]

    Dong Q, Liu F, Wong M K, Tam H W, Djurisic A B, Ng A, Surya C, Chan W K, Ng A M 2016 ChemSusChem 9 2597Google Scholar

    [82]

    Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J 2018 Nat. Energy 3 560Google Scholar

    [83]

    Wu W Q, Wang Q, Fang Y, Shao Y, Tang S, Deng Y, Lu H, Liu Y, Li T, Yang Z, Gruverman A, Huang J 2018 Nat. Commun. 9 1625Google Scholar

    [84]

    Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell J J, Kanjanaboos P, Sun J P, Lan X, Quan L N, Kim D H, Hill I G, Maksymovych P, Sargent E H 2015 Nat. Commun. 6 7081Google Scholar

    [85]

    Bi D, Gao P, Scopelliti R, Oveisi E, Luo J, Gratzel M, Hagfeldt A, Nazeeruddin M K 2016 Adv. Mater. 28 2910Google Scholar

    [86]

    Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J 2014 Energy Environ. Sci. 7 2359Google Scholar

    [87]

    Yang B, Brown C C, Huang J, Collins L, Sang X, Unocic R R, Jesse S, Kalinin S V, Belianinov A, Jakowski J, Geohegan D B, Sumpter B G, Xiao K, Ovchinnikova O S 2017 Adv. Funct. Mater. 27 1700749Google Scholar

    [88]

    Xing J, Wang Q, Dong Q, Yuan Y, Fang Y, Huang J 2016 Phys. Chem. Chem. Phys. 18 30484Google Scholar

    [89]

    Chen J, Lee D, Park N G 2017 ACS Appl. Mater. Inter. 9 36338Google Scholar

    [90]

    Wang Z, Lin Q, Chmiel F P, Sakai N, Herz L M, Snaith H J 2017 Nat. Energy 2 1700749Google Scholar

    [91]

    Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, De Marco N, Zhao H, Sun P, Huang Y, Yang Y 2018 Nat. Commun. 9 3021Google Scholar

    [92]

    Xiao X, Dai J, Fang Y, Zhao J, Zheng X, Tang S, Rudd P N, Zeng X C, Huang J 2018 ACS Energy Lett. 3 684Google Scholar

    [93]

    Umeyama T, Imahori H, Murugadoss G, Tanaka S, Mizuta G, Kanaya S, Nishino H, Ito S 2015 Japan. J. Appl. Phys. 54 8Google Scholar

    [94]

    Mosconi E, Grancini G, Roldán-Carmona C, Gratia P, Zimmermann I, Nazeeruddin M K, De Angelis F 2016 Chem. Mater. 28 3612Google Scholar

    [95]

    Lee S W, Kim S, Bae S, Cho K, Chung T, Mundt L E, Lee S, Park S, Park H, Schubert M 2016 Sci. Rep. 6 38150Google Scholar

    [96]

    Li Y, Li Y, Shi J, Li H, Zhang H, Wu J, Li D, Luo Y, Wu H, Meng Q J 2018 Appl. Phys. Lett. 112 053904Google Scholar

    [97]

    Farooq A, Hossain, Ihteaz M, Moghadamzadeh, Somayeh, Schwenzer, Jonas A, Abzieher 2018 ACS Appl. Mater. Inter. 10 21985Google Scholar

    [98]

    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323Google Scholar

    [99]

    Jin J, Li H, Chen C, Zhang B, Bi W, Song Z, Xu L, Dong B, Song H, Dai Q 2018 ACS Appl. Energy Mater. 1 2096Google Scholar

    [100]

    Wang Q, Zhang X, Jin Z, Zhang J, Gao Z, Li Y, Liu S F 2017 ACS Energy Lett. 2 1479Google Scholar

    [101]

    You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y 2016 Nat. Nanotechnol. 11 75Google Scholar

    [102]

    Carnie M J, Charbonneau C, Davies M L, Troughton J, Watson T M, Wojciechowski K, Snaith H, Worsley D A 2013 Chem. Commun. (Camb) 49 7893Google Scholar

    [103]

    Wang C, Guan L, Zhao D, Yu Y, Grice C R, Song Z, Awni R A, Chen J, Wang J, Zhao X, Yan Y 2017 ACS Energy Lett. 2 2118Google Scholar

    [104]

    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J 2016 Nat. Energy 2 16177Google Scholar

    [105]

    Wang Z, Kamarudin A, Huey C, Yang F, Pandey M, Kapil G, Ma T, Hayase S 2018 ChemSusChem 11 3941Google Scholar

    [106]

    Hu M, Zhang L, She S, Wu J, Zhou X, Li X, Wang D, Miao J, Mi G, Chen H, Tian Y, Xu B, Cheng C 2020 Sol. Rrl. 4 2070014Google Scholar

    [107]

    Sidhik S, Panikar S S, Pérez C R, Luke T L, Carriles R, Carrera S C, De la Rosa E 2018 ACS Sus. Chem. Eng. 6 15391Google Scholar

    [108]

    Shih Y C, Lan Y B, Li C S, Hsieh H C, Wang L, Wu C I, Lin K F 2017 Small 13 36338Google Scholar

    [109]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. C. 118 16651Google Scholar

    [110]

    Zhou Q, Liu X, Luo W, Shen J, Wei D, Wang Y 2018 Mater. Res. Express. 5 3Google Scholar

    [111]

    Zhang L, Rao H, Pan Z, Zhong X 2019 ACS Appl. Mater. Inter. 84 234Google Scholar

    [112]

    Lee Y H, Luo J, Son M K, Gao P, Cho K T, Seo J, Zakeeruddin S M, Tzel M, Nazeeruddin M 2016 Adv. Mater. 28 10124Google Scholar

    [113]

    Abrusci A, Stranks S D, Docampo P, Yip H L, Snaith H J 2013 Nano Lett. 7 3124Google Scholar

    [114]

    Hwang I, Baek M, Yong K J 2015 ACS Appl. Mater. Inter. 50 27863Google Scholar

    [115]

    Cao J, Yin J, Yuan S, Zhao Y, Zheng N 2015 Nanoscale 7 9443Google Scholar

    [116]

    Wang L Y, Dong H, Wang L 2014 Rsc. Adv. 9 10123Google Scholar

    [117]

    Li W, Zhang W, Van Reenen S, Sutton R J, Fan J, Haghighirad A Johnston M B, Wang L, Snaith H J 2016 Energy Environ. Sci. 9 490Google Scholar

    [118]

    Seo J Y, Uchida R, Kim H S, Saygili Y, Luo J, Moore C, Kerrod J, Wagstaff A, Eklund M, Mcintyre R 2018 Adv. Funct. Mater. 28 1705763Google Scholar

    [119]

    Sanchez R S, Mas-Marza E 2016 Sol. Energy Mater. Sol. C. 158 189Google Scholar

    [120]

    Jena A K, Numata Y, Ikegami M, Miyasaka T 2018 J. Mater. Chem. A 6 2219Google Scholar

    [121]

    Matteocci F, Cinà L, Lamanna E, Cacovich S, Divitini G, Midgley P A, Ducati C, Di Carlo A 2016 Nano Energy 30 162Google Scholar

    [122]

    Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J 2014 Nano Lett. 14 5561Google Scholar

    [123]

    Jung M, Kim Y C, Jeon N J, Yang W S, Seo J, Noh J H, Seok S 2016 ChemSusChem 9 2592Google Scholar

    [124]

    Liu J, Pathak S K, Sakai N, Sheng R, Bai S, Wang Z, Snaith H J 2016 Adv. Mater. Inter. 3 1600571Google Scholar

    [125]

    Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L 2014 Energy Environ. Sci. 7 2963Google Scholar

    [126]

    Li J W, Dong Q S, Li N, Wang L D 2017 Adv. Energy Mater. 14 1602922Google Scholar

    [127]

    Ming W, Yang D, Li T, Zhang L, Du M H 2018 Adv. Sci. 5 1700662Google Scholar

    [128]

    Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Graetzel M J E 2017 Science 358 768Google Scholar

    [129]

    Shao F, Tian Z, Qin P, Bu K, Zhao W, Xu L, Wang D, Huang F 2018 Sci. Rep. 8 7033Google Scholar

    [130]

    Yang Y, Xiao J, Wei H, Zhu L, Li D, Luo Y, Wu H, Meng Q 2014 RSC Adv. 4 52825Google Scholar

    [131]

    Zhang F, Yang X, Cheng M, Wang W, Sun L 2016 Nano Energy 20 108Google Scholar

    [132]

    Liu Z, Zhang M, Xu X, Bu L, Zhang W, Li W, Zhao Z, Wang M, Cheng Y B, He H 2015 Dalton. Trans. 44 3967Google Scholar

  • [1] SHANG Wenli, WANG Likun, ZHANG Xiaochun, YUE Xin, LI Yifeng, WAN Zhenghui, YANG Huayi, LI Ting, WANG Hui. Fabrication of n-i-p perovskite solar cells based on strategy of buried interface modification. Acta Physica Sinica, 2025, 74(2): 028401. doi: 10.7498/aps.74.20241549
    [2] Li Yu-Fan, Xue Wen-Qing, Li Yu-Chao, Zhan Yan-Hu, Xie Qian, Li Yan-Kai, Zha Jun-Wei. Research progress of flexible energy storage dielectric materials with sandwiched structure. Acta Physica Sinica, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [3] Qu Zi-Han, Zhao Yang, Ma Fei, You Jing-Bi. Preparation of high-performance large-area perovskite solar cells by atomic layer deposition of metal oxide buffer layer. Acta Physica Sinica, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [4] Zhang Xi-Sheng, Yan Chun-Yu, Hu Li-Na, Wang Jing-Zhou, Yao Chen-Zhong. Perovskite solar cells prepared by processing CsPbBr3 nanocrystalline films in low temperature solution. Acta Physica Sinica, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [5] Han Xiao-Jing, Yang Jing, Zhang Jia-Li, Liu Dong-Xue, Shi Biao, Wang Peng-Yang, Zhao Ying, Zhang Xiao-Dan. Electron transport layer of tin dioxide deposited by reactive plasma and its application in perovskite solar cells. Acta Physica Sinica, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [6] Han Mei-Dou-Xue,  Wang Ya,  Wang Rong-Bo,  Zhao Jun-Tao,  Ren Hui-Zhi,  Hou Guo-Fu,  Zhao Ying,  Zhang Xiao-Dan,  Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [7] Han Mei-Dou-Xue, Wang Ya, Wang Rong-Bo, Zhao Jun-Tao, Ren Hui-Zhi, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan, Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [8] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Simulation and property calculation for FA1–xCsx PbI3–y Bry: Structures and optoelectronical properties. Acta Physica Sinica, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [9] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells. Acta Physica Sinica, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [10] Xu Ting, Wang Zi-Shuai, Li Xuan-Hua, Sha Wei E. I.. Loss mechanism analyses of perovskite solar cells with equivalent circuit model. Acta Physica Sinica, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [11] Liang Xiao-Juan, Cao Yu, Cai Hong-Kun, Su Jian, Ni Jian, Li Juan, Zhang Jian-Jun. Simulation and architectural design for Schottky structure perovskite solar cells. Acta Physica Sinica, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [12] Pan Heng, Chen Pei-Run, Shi Biao, Li Yu-Cheng, Gao Qing-Yun, Zhang Li, Zhao Ying, Huang Qian, Zhang Xiao-Dan. Review of the research on nano-structure used as light harvesting in perovskite solar cells. Acta Physica Sinica, 2020, 69(7): 077101. doi: 10.7498/aps.69.20191660
    [13] Chen Yong-Liang, Tang Ya-Wen, Chen Pei-Run, Zhang Li, Liu Qi, Zhao Ying, Huang Qian, Zhang Xiao-Dan. Progress in perovskite solar cells based on different buffer layer materials. Acta Physica Sinica, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [14] You Jia-Xue,  Wang Jin-Cheng,  Wang Li-Lin,  Wang Zhi-Jun,  Li Jun-Jie,  Lin Xin. Recent progress of solidification of suspensions. Acta Physica Sinica, 2019, 68(1): 018101. doi: 10.7498/aps.68.20181645
    [15] Wu Bu-Jun, Lin Dong-Xu, Li Zheng, Cheng Zhen-Ping, Li Xin, Chen Ke, Shi Ting-Ting, Xie Wei-Guang, Liu Peng-Yi. Optimization of grain size to achieve high-performance perovskite solar cells in vapor deposition. Acta Physica Sinica, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [16] Jia Ning,  Wang Shan-Peng,  Tao Xu-Tang. Research progress of mid-and far-infrared nonlinear optical crystals. Acta Physica Sinica, 2018, 67(24): 244203. doi: 10.7498/aps.67.20181591
    [17] Li Shao-Hua, Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Wen-Biao, Pan Ling, Yang Shi-E, Chen Yong-Sheng. Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [18] Wang Jun-Xia, Bi Zhuo-Neng, Liang Zhu-Rong, Xu Xue-Qing. Progress of new carbon material research in perovskite solar cells. Acta Physica Sinica, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [19] Wang Fu-Zhi, Tan Zhan-Ao, Dai Song-Yuan, Li Yong-Fang. Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [20] Han Yong, Wang Ti-Jian, Rao Rui-Zhong, Wang Ying-Jian. Progress in the study of physic-optics characteristics of atmospheric aerosols. Acta Physica Sinica, 2008, 57(11): 7396-7407. doi: 10.7498/aps.57.7396
Metrics
  • Abstract views:  14407
  • PDF Downloads:  325
  • Cited By: 0
Publishing process
  • Received Date:  23 October 2020
  • Accepted Date:  11 December 2020
  • Available Online:  27 April 2021
  • Published Online:  05 May 2021

/

返回文章
返回