Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Review on modeling polar sea-ice acoustics waveguide

Yin Jing-Wei Ma Ding-Yi Zhang Yu-Xiang Sheng Xue-Li

Citation:

Review on modeling polar sea-ice acoustics waveguide

Yin Jing-Wei, Ma Ding-Yi, Zhang Yu-Xiang, Sheng Xue-Li
PDF
HTML
Get Citation
  • With the continued global warming, polar science has become one of the research hotspots. Regarding polar acoustics, much progress has been made due to the efforts made by scientists in the world. With the enhancement of stereoscopic monitoring capacity in polar regions, the acoustic theory and technologies applicable to Arctic sea-ice, which have long been overlooked as a branch of acoustics, are now dawning more and more attention. The propagation of elastic waves in the Arctic sea-ice is governed by its waveguide, and the understanding of which faces a grave challenge due to the unique material properties and complex internal structure of sea-ice, along with the asymmetric fluid-solid coupling at its boundaries and the inaccessibility for in-situ experiments, which is caused by the extreme condition. Aiming at an effectively and precisely modeling technique of acoustic propagation in sea-ice, including its waveguide, in this paper, the progress, the development, and the status of corresponding researches are reviewed. For a better understanding of the modeling of sea-ice, Arctic sea-ice, i.e. its formation condition, geometries, mechanical properties, microstructures, and the acoustic propagation, is briefly introduced. Different approaches to modeling the propagation of elastic waves in ice-floe based on explicit/implicit boundary conditions are presented and explained in detail. The resulting transcendental characteristic equation describing the acoustic propagation needs to be solved in a complex space for the severe energy leakage at the water-ice interface, and the necessary numerical methods of solving this equation are then explained and compared with each other. Since accurate parameters are imperative in having a satisfactory fidelity for any physical model, the acoustic parameters of Arctic sea-ice, historical evolution and experimental results, along with its assessment techniques are also presented, and a set of sound velocity parameters of Arctic sea-ice are provided for modeling. The roughness of the ice-water interface is discussed case-by-case depending on its spatial scale in comparison with acoustic wavelength for its influence on the elastic waveguide. The perspectives and potential applications of the sea-ice acoustic waveguide within the frame of promoting sustainable development of the polar region are also discussed.
      Corresponding author: Zhang Yu-Xiang, yuxiang.zhang@hrbeu.edu.cn
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U20A20329), the National Basic Research Program of China (Grant No. 2021YFC2801200), and the National Natural Science Foundation of China (Grant No. 52171334)
    [1]

    李启虎, 王宁, 赵进平, 黄海宁, 尹力, 黄勇, 李宇, 薛山花, 任新敏, 李涛 2014 应用声学 33 471Google Scholar

    Li Q H, Wang N, Zhao J P, Huang H N, Yin L, Huang Y, Li Y, Xue S H, Ren X M, Li T 2014 Appl. Acoust. 33 471Google Scholar

    [2]

    Climate Change Indicators: Arctic Sea Icehttps://www.epa.gov/climate-indicators/climate-change-indicators-arctic-sea-ice [2021-1-1]

    [3]

    李培基 1996 冰川冻土 18 72Google Scholar

    Li P J. 1996 J. Glaciol. Geocryol. 18 72Google Scholar

    [4]

    Grenfell T C, Maykut G A. 1977 J. Glaciol. 18 445Google Scholar

    [5]

    Nakamura N, Oort A H 1988 J. Geophys. Res-Atmos. 93 9510Google Scholar

    [6]

    Magnusdottir G, Deser C, Saravanan R. 2004 J. Climate 17 857Google Scholar

    [7]

    England M R, Polvani L M, Sun L, Deser C, Saravanan R 2020 Nature Geosci. 13 1Google Scholar

    [8]

    Milne A R, Ganton J H 1964 J. Acoust. Soc. Am. 36 855Google Scholar

    [9]

    Xu X Q, Lin J M, Fang S K 2020 Earthquake Research in China 34 264Google Scholar

    [10]

    朱广平, 殷敬伟, 陈文剑, 胡思为, 周焕玲, 郭龙祥 2017 声学学报 42 152Google Scholar

    Zhu G P, Yin J W, Chen W J, Hu S W, Zhou H L, Guo L X 2017 Acta Acustica 42 152Google Scholar

    [11]

    Kinda G B, Simard Y, Gervaise C, Mars J I, Fortier L 2015 J. Acoust. Soc. Am. 138 2034Google Scholar

    [12]

    Tian Y N, Han X, Yin J W, Liu Q Y, Li L 2019 J. Acoust. Soc. Am. 146 2482Google Scholar

    [13]

    Yin J W, Liu B, Zhu G P, Xie Z N 2018 Sensors 18 3461Google Scholar

    [14]

    Schwarz J, Weeks W F. 1977 J. Glaciol. 19 499Google Scholar

    [15]

    Untersteiner N 1986 The Geophysics of Sea Ice (America: Springer US) pp1–8

    [16]

    Lebedev V V 1938 Probl. Arkt. Antarkt. 5 9

    [17]

    李志军 康建成 2001 冰川冻土 23 383Google Scholar

    Li Z J Kang J C 2001 J. Glaciol. Geocryol. 23 383Google Scholar

    [18]

    李冰洁, 庞小平, 季青 2019 极地研究 31 258Google Scholar

    Li B J, Pang X P, Ji Q 2019 Chin. J. Polar Res. 31 258Google Scholar

    [19]

    Press F, Ewing M 1951 Eos Transactions American Geophysical Union 32 673Google Scholar

    [20]

    Petrich C, Eicken H 2010 Sea Ice (2nd Ed.) (America: Wiley-Blackwell) pp23–77

    [21]

    Cox G F N, Richter J A, Weeks W F, Mellor M 1984 a Proceedings of the 3rd International Offshore Mechanics and Arctic Engineering Symposium New Orleans, Louisiana, February 12–17, 1984 p126

    [22]

    Richter-Menge J A, Cox G F N 1984 Proceedings of the 3rd International Offshore Mechanics and Arctic Engineering Symposium New Orleans, Louisiana, February 12–17, 1984 p194

    [23]

    Timco G W, Weeks W F 2010 Cold Reg. Sci. Technol. 60 107Google Scholar

    [24]

    Weeks W F, Gow A J 1980 J. Geophys. Res. 85 137

    [25]

    Stander E, Michel B 1989 Cold Reg. Sci. Technol. 17 153Google Scholar

    [26]

    Diez A, Eisen O 2015 Cryosphere 9 367Google Scholar

    [27]

    Diez A, Eisen O 2015 Cryosphere 9 385Google Scholar

    [28]

    Vaughan M J, Prior D J, Jefferd M, Brantut N, Mitchell T M, Seidemann M 2017 J. Geophys. Res-Sol. 122 7076Google Scholar

    [29]

    Sayers C M 2018 Geophys. J. Int. 1 1

    [30]

    Jeffries M G Wright W H 1988 Proceedings of the 3 rd International Offshore Mechanics and Arctic Engineering Symposium New Orleans, Louisiana, February 12–17, 1984 p201

    [31]

    孙俊英 2000 冰川冻土 22 3Google Scholar

    Sun J Y 2000 J. Glaciol. Geocryol. 22 3Google Scholar

    [32]

    Sato Y 1951 Bulletin of the Earthquake Research Institute University of Tokyo XXIX 223

    [33]

    Miller B E 1990 J. Acoust. Soc. Am. 89 1668Google Scholar

    [34]

    Yang T C, Giellis G R 1994 J. Acoust. Soc. Am. 96 2993Google Scholar

    [35]

    Miklowitz J, Kaul R K 1984 J. Appl. Mech. 46 969

    [36]

    Rose J L 2000 J. Acoust. Soc. Am. 107 1807Google Scholar

    [37]

    Lamb H 1917 Proc. R. Soc. London A93 114

    [38]

    邓明晰 1996 声学学报 21 429Google Scholar

    Deng M X 1996 Acta Acustica 21 429Google Scholar

    [39]

    Zhu Z M, Wu J R 1995 J. Acoust. Soc. Am. 98 1057Google Scholar

    [40]

    Solie L P, Auld B A 1973 J. Acoust. Soc. Am. 54 50Google Scholar

    [41]

    Osborne M F M, Hart S D 1945 J. Acoust. Soc. Am. 17 1Google Scholar

    [42]

    Dayal V, Vinay K K 1989 J. Acoust. Soc. Am. 85 2268Google Scholar

    [43]

    Wu J R, Zhu Z M 1992 J. Acoust. Soc. Am. 91 861Google Scholar

    [44]

    Press F, Ewing M 1951 J. Appl. Phys. 22 892Google Scholar

    [45]

    Landschulze M 2018 Near Surf. Geophys. 16 493Google Scholar

    [46]

    Yang T C, Yates T W 1995 J. Acoust. Soc. Am. 97 971Google Scholar

    [47]

    Graff K F 1975 Wave Motion in Elastic Solid (London: Oxford University Press)

    [48]

    Thomson W T 1950 J. Appl. Phys. 21 89Google Scholar

    [49]

    Haskell N A 1953 Bull. Seismol. Soc. Am. 43 86Google Scholar

    [50]

    Knopoff L A 1964 Bull. Seismol. Soc. Am. 54 431Google Scholar

    [51]

    Randall M J 1967 Bull. Seismol. Soc. Am. 57 1299Google Scholar

    [52]

    Lowe M J S 1995 IEEE T. Ultrason. Ferr. 42 525Google Scholar

    [53]

    Yu L Y, Tian Z H 2015 Nondestruct. Test. Eva. 3 1Google Scholar

    [54]

    Press F, Harkrider D G, Seafeldt C A 1961 Bull. Seismol. Soc. Am. 51 495Google Scholar

    [55]

    Thrower E N 1965 J. Sound Vib. 2 210Google Scholar

    [56]

    Watson T H 1970 Bull. Seismol. Soc. Am. 60 161Google Scholar

    [57]

    Fred, Schwab 1970 Bull. Seismol. Soc. Am. 60 1491Google Scholar

    [58]

    Schwab F A, Knopoff L 1972 Methods in Computational Physics: Advances in Research and Applications (Vol. 11) (New York: Academic Press) pp87–180

    [59]

    Mal A K, Kundu T 1987 Review of Progress in Quantitative NDE (Vol. 6) (New York: Springer US) pp109–116

    [60]

    M. J. S. Lowe 1993 Ph. D. Dissertation (London: University of London)

    [61]

    Barshinger J N, Rose J L 2004 IEEE T. Ultrason. Ferr. 51 1547Google Scholar

    [62]

    刘增华, 何存富, 吴斌 2005 无损检测 27 225Google Scholar

    Liu Z H, He C F, Wu B 2005 Non Destructive Testing 27 225Google Scholar

    [63]

    龚家元 2010 硕士学位论文(哈尔滨: 哈尔滨工程大学)

    Gong J Y 2010 M. S. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [64]

    马丁一, 张宇翔, 谢志南, 高家辉, 殷敬伟 2019 声学技术 4 479

    Ma D Y, Zhang Y X, Xie Z N, Gao J H, Yin J W 2019 Technic. Acoustics 4 479

    [65]

    赵凤文 1991 哈尔滨船舶工程学院学报 2 110

    Zhao S W 1991 J. Harbin Engineer. Univ. 2 110

    [66]

    Adamou A T I, Craster R V 2004 J. Acoust. Soc. Am. 116 1524Google Scholar

    [67]

    Karpfinger F, Gurevich B, Bakulin A 2008 J. Acoust. Soc. Am. 124 859Google Scholar

    [68]

    Karpfinger F, Valero H P, Gurevich B, Bakulin A, Sinha B 2010 Geophysics 75 H19Google Scholar

    [69]

    王献忠, 吴卫国, 庞福振, 孔祥韶 2015 振动与冲击 34 13Google Scholar

    Wang X Z, Wu W G, Pang F Z, Kong X S 2015 J. Vibrat. Shock 34 13Google Scholar

    [70]

    Zharnikov T V, Syresin D E, Hsu C J 2013 J. Acoust. Soc. Am. 134 1739Google Scholar

    [71]

    Quintanilla F H, Lowe M, Craster R 2015 AIP Conf. Proc. 1650 739Google Scholar

    [72]

    Sinha, B K, Tiersten H F 1981 J. Appl. Phys. 52 7196Google Scholar

    [73]

    Jen C K, Safaai-Jazi A, Farnell W G 1986 IEEE T. Ultrason. Ferr. 33 634Google Scholar

    [74]

    Porter M B, Reiss E L 1985 J. Acoust. Soc. Am. 77 S13Google Scholar

    [75]

    Brazier-Smith P R, Scott J F M 1991 J. Sound Vib. 145 503Google Scholar

    [76]

    何世平, 汤渭霖, 范军 2005 声学学报 30 249Google Scholar

    He S P, Tang W L, Fan J 2005 Acta Acustica 30 249Google Scholar

    [77]

    Ivansson S 1992 J. Acoust. Soc. Am. 89 1894Google Scholar

    [78]

    Wang N Wang H Z 2010 J. Comput. Acoust. 18 159Google Scholar

    [79]

    Wang H Z, Wang N, Gao D Z 2012 J. Acoust. Soc. Am. 131 1047Google Scholar

    [80]

    Mccammon D F, Mcdaniel S T 1985 J. Acoust. Soc. Am. 77 499Google Scholar

    [81]

    Ewing M, Crary A P, Jr A M T 1934 Physics 5 165Google Scholar

    [82]

    Crary, A P 1954 EOS Transact. Am. Geophys. Union 35 293Google Scholar

    [83]

    Hunkins K 1960 J. Geophys. Res. 65 3459Google Scholar

    [84]

    Schwartz J 1970 Revue Decologie Et De Biologie. Du. Sol. 354

    [85]

    Timco G W, Frederking R M W 1996 Cold Reg. Sci. Technol. 24 1Google Scholar

    [86]

    Cox G F, Weeks W F 1988 Army Cold Regions Research & Engineering Laboratory Crrel Report 88 13

    [87]

    Eicken H, Krouse H R, Kadko D, Perovich D K 2002 J. Geophys. Res. 107 8046Google Scholar

    [88]

    Cox G F N Weeks W F 1974 J. Glaciol. 13 109Google Scholar

    [89]

    Johnston M Timco G W 2002 Proceedings of the 16 th IAHR International Symposium on Ice 2 194

    [90]

    Ackley S F, Hibler W D, Kugzruk F K, Kovacs A, Weeks W F 1974 Oceans IEEE 1 109Google Scholar

    [91]

    Andreas E L, Lange M A, Ackley S F, Wadhams P 1993 J. Geophys. Res-Oceans 98 12Google Scholar

    [92]

    Mcphee M G 2002 J. Geophys. Res-Oceans 107 11Google Scholar

    [93]

    Adolphs U 1999 J. Geophys. Res-Oceans 104 13Google Scholar

    [94]

    Robinson N J, Stevens C L, McPhee M G 2017 Geophys. Res. Lett. 44 1814Google Scholar

    [95]

    Ech-Cherif El-Kettani M, F Luppé, Guillet A 2004 Ultrasonics 42 807Google Scholar

    [96]

    Johnston M, Masterson D, Wright B 2009 Proceedings 20 th POAC Conference 9 120

    [97]

    Marical P, Ech-Cherif El-Kettani M, Predoi M V 2007 Ultrasonics 47 1Google Scholar

    [98]

    Ech-Cherif El-Kettani M, Marical P, Hamitouche Z 2009 IEEE T. Ultrason. Ferr. 56 2023Google Scholar

    [99]

    Oliver J, Crary A P, Cotell R 1954 EOS Transact. Am. Geophys. Union 35 282Google Scholar

    [100]

    Sutherland G Rabault J 2016 J. Geophys. Res-Oceans 121 1984Google Scholar

    [101]

    Marsan D, Weiss J, Larose E, Métaxian J 2012 J. Acoust. Soc. Am. 131 80Google Scholar

    [102]

    Marsan D, Weiss J, Moreau L, Gimbert F, Doble M, Larose E, Grangeon J 2019 J. Acoust. Soc. Am. 145 1600Google Scholar

    [103]

    Moreau L, Lachaud C, Thery R, Predoi M V, Marsan D, Larose E, Weiss J, Montagnat M 2017 J. Acoust. Soc. Am. 142 2873Google Scholar

    [104]

    Moreau L, Boué P, Serripierri A, Weiss J, Hollis D, Pondaven I, Vial B, Garambois S, Larose É, Helmstetter A, Stehly L, Hillers G, Gilbert O 2020 J. Geophys. Res-Oceans 125

  • 图 1  对称模态、反对称模态的Lamb波振动模式

    Figure 1.  Illustration of the symmetric and antisymmetric vibration modes of Lamb wave.

    图 2  弹性波导物理模型 (a)浸没式弹性板波导; (b)浮冰波导

    Figure 2.  Physical model of the elastic waveguide: (a) Immersed elastic plate; (b) floating ice floe.

    图 3  多层介质物理模型示意图[52]

    Figure 3.  Schematic diagram of physical model of multilayered medium[52].

    图 4  经典二分法绘制自由弹性冰层(*)及全浸没弹性冰层(·)频散曲线

    Figure 4.  Dispersion curves of ice floe in vacuum (*) and immersed in water (·) calculated using the bisection method.

    图 5  局部峰值法(⋅)与谱方法(*)绘制浮冰频散曲线对比图[64]

    Figure 5.  Comparison of the dispersion curves of ice floe calculated using the Local Peak Search Method (⋅) and Spectral Method (*)[64].

  • [1]

    李启虎, 王宁, 赵进平, 黄海宁, 尹力, 黄勇, 李宇, 薛山花, 任新敏, 李涛 2014 应用声学 33 471Google Scholar

    Li Q H, Wang N, Zhao J P, Huang H N, Yin L, Huang Y, Li Y, Xue S H, Ren X M, Li T 2014 Appl. Acoust. 33 471Google Scholar

    [2]

    Climate Change Indicators: Arctic Sea Icehttps://www.epa.gov/climate-indicators/climate-change-indicators-arctic-sea-ice [2021-1-1]

    [3]

    李培基 1996 冰川冻土 18 72Google Scholar

    Li P J. 1996 J. Glaciol. Geocryol. 18 72Google Scholar

    [4]

    Grenfell T C, Maykut G A. 1977 J. Glaciol. 18 445Google Scholar

    [5]

    Nakamura N, Oort A H 1988 J. Geophys. Res-Atmos. 93 9510Google Scholar

    [6]

    Magnusdottir G, Deser C, Saravanan R. 2004 J. Climate 17 857Google Scholar

    [7]

    England M R, Polvani L M, Sun L, Deser C, Saravanan R 2020 Nature Geosci. 13 1Google Scholar

    [8]

    Milne A R, Ganton J H 1964 J. Acoust. Soc. Am. 36 855Google Scholar

    [9]

    Xu X Q, Lin J M, Fang S K 2020 Earthquake Research in China 34 264Google Scholar

    [10]

    朱广平, 殷敬伟, 陈文剑, 胡思为, 周焕玲, 郭龙祥 2017 声学学报 42 152Google Scholar

    Zhu G P, Yin J W, Chen W J, Hu S W, Zhou H L, Guo L X 2017 Acta Acustica 42 152Google Scholar

    [11]

    Kinda G B, Simard Y, Gervaise C, Mars J I, Fortier L 2015 J. Acoust. Soc. Am. 138 2034Google Scholar

    [12]

    Tian Y N, Han X, Yin J W, Liu Q Y, Li L 2019 J. Acoust. Soc. Am. 146 2482Google Scholar

    [13]

    Yin J W, Liu B, Zhu G P, Xie Z N 2018 Sensors 18 3461Google Scholar

    [14]

    Schwarz J, Weeks W F. 1977 J. Glaciol. 19 499Google Scholar

    [15]

    Untersteiner N 1986 The Geophysics of Sea Ice (America: Springer US) pp1–8

    [16]

    Lebedev V V 1938 Probl. Arkt. Antarkt. 5 9

    [17]

    李志军 康建成 2001 冰川冻土 23 383Google Scholar

    Li Z J Kang J C 2001 J. Glaciol. Geocryol. 23 383Google Scholar

    [18]

    李冰洁, 庞小平, 季青 2019 极地研究 31 258Google Scholar

    Li B J, Pang X P, Ji Q 2019 Chin. J. Polar Res. 31 258Google Scholar

    [19]

    Press F, Ewing M 1951 Eos Transactions American Geophysical Union 32 673Google Scholar

    [20]

    Petrich C, Eicken H 2010 Sea Ice (2nd Ed.) (America: Wiley-Blackwell) pp23–77

    [21]

    Cox G F N, Richter J A, Weeks W F, Mellor M 1984 a Proceedings of the 3rd International Offshore Mechanics and Arctic Engineering Symposium New Orleans, Louisiana, February 12–17, 1984 p126

    [22]

    Richter-Menge J A, Cox G F N 1984 Proceedings of the 3rd International Offshore Mechanics and Arctic Engineering Symposium New Orleans, Louisiana, February 12–17, 1984 p194

    [23]

    Timco G W, Weeks W F 2010 Cold Reg. Sci. Technol. 60 107Google Scholar

    [24]

    Weeks W F, Gow A J 1980 J. Geophys. Res. 85 137

    [25]

    Stander E, Michel B 1989 Cold Reg. Sci. Technol. 17 153Google Scholar

    [26]

    Diez A, Eisen O 2015 Cryosphere 9 367Google Scholar

    [27]

    Diez A, Eisen O 2015 Cryosphere 9 385Google Scholar

    [28]

    Vaughan M J, Prior D J, Jefferd M, Brantut N, Mitchell T M, Seidemann M 2017 J. Geophys. Res-Sol. 122 7076Google Scholar

    [29]

    Sayers C M 2018 Geophys. J. Int. 1 1

    [30]

    Jeffries M G Wright W H 1988 Proceedings of the 3 rd International Offshore Mechanics and Arctic Engineering Symposium New Orleans, Louisiana, February 12–17, 1984 p201

    [31]

    孙俊英 2000 冰川冻土 22 3Google Scholar

    Sun J Y 2000 J. Glaciol. Geocryol. 22 3Google Scholar

    [32]

    Sato Y 1951 Bulletin of the Earthquake Research Institute University of Tokyo XXIX 223

    [33]

    Miller B E 1990 J. Acoust. Soc. Am. 89 1668Google Scholar

    [34]

    Yang T C, Giellis G R 1994 J. Acoust. Soc. Am. 96 2993Google Scholar

    [35]

    Miklowitz J, Kaul R K 1984 J. Appl. Mech. 46 969

    [36]

    Rose J L 2000 J. Acoust. Soc. Am. 107 1807Google Scholar

    [37]

    Lamb H 1917 Proc. R. Soc. London A93 114

    [38]

    邓明晰 1996 声学学报 21 429Google Scholar

    Deng M X 1996 Acta Acustica 21 429Google Scholar

    [39]

    Zhu Z M, Wu J R 1995 J. Acoust. Soc. Am. 98 1057Google Scholar

    [40]

    Solie L P, Auld B A 1973 J. Acoust. Soc. Am. 54 50Google Scholar

    [41]

    Osborne M F M, Hart S D 1945 J. Acoust. Soc. Am. 17 1Google Scholar

    [42]

    Dayal V, Vinay K K 1989 J. Acoust. Soc. Am. 85 2268Google Scholar

    [43]

    Wu J R, Zhu Z M 1992 J. Acoust. Soc. Am. 91 861Google Scholar

    [44]

    Press F, Ewing M 1951 J. Appl. Phys. 22 892Google Scholar

    [45]

    Landschulze M 2018 Near Surf. Geophys. 16 493Google Scholar

    [46]

    Yang T C, Yates T W 1995 J. Acoust. Soc. Am. 97 971Google Scholar

    [47]

    Graff K F 1975 Wave Motion in Elastic Solid (London: Oxford University Press)

    [48]

    Thomson W T 1950 J. Appl. Phys. 21 89Google Scholar

    [49]

    Haskell N A 1953 Bull. Seismol. Soc. Am. 43 86Google Scholar

    [50]

    Knopoff L A 1964 Bull. Seismol. Soc. Am. 54 431Google Scholar

    [51]

    Randall M J 1967 Bull. Seismol. Soc. Am. 57 1299Google Scholar

    [52]

    Lowe M J S 1995 IEEE T. Ultrason. Ferr. 42 525Google Scholar

    [53]

    Yu L Y, Tian Z H 2015 Nondestruct. Test. Eva. 3 1Google Scholar

    [54]

    Press F, Harkrider D G, Seafeldt C A 1961 Bull. Seismol. Soc. Am. 51 495Google Scholar

    [55]

    Thrower E N 1965 J. Sound Vib. 2 210Google Scholar

    [56]

    Watson T H 1970 Bull. Seismol. Soc. Am. 60 161Google Scholar

    [57]

    Fred, Schwab 1970 Bull. Seismol. Soc. Am. 60 1491Google Scholar

    [58]

    Schwab F A, Knopoff L 1972 Methods in Computational Physics: Advances in Research and Applications (Vol. 11) (New York: Academic Press) pp87–180

    [59]

    Mal A K, Kundu T 1987 Review of Progress in Quantitative NDE (Vol. 6) (New York: Springer US) pp109–116

    [60]

    M. J. S. Lowe 1993 Ph. D. Dissertation (London: University of London)

    [61]

    Barshinger J N, Rose J L 2004 IEEE T. Ultrason. Ferr. 51 1547Google Scholar

    [62]

    刘增华, 何存富, 吴斌 2005 无损检测 27 225Google Scholar

    Liu Z H, He C F, Wu B 2005 Non Destructive Testing 27 225Google Scholar

    [63]

    龚家元 2010 硕士学位论文(哈尔滨: 哈尔滨工程大学)

    Gong J Y 2010 M. S. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [64]

    马丁一, 张宇翔, 谢志南, 高家辉, 殷敬伟 2019 声学技术 4 479

    Ma D Y, Zhang Y X, Xie Z N, Gao J H, Yin J W 2019 Technic. Acoustics 4 479

    [65]

    赵凤文 1991 哈尔滨船舶工程学院学报 2 110

    Zhao S W 1991 J. Harbin Engineer. Univ. 2 110

    [66]

    Adamou A T I, Craster R V 2004 J. Acoust. Soc. Am. 116 1524Google Scholar

    [67]

    Karpfinger F, Gurevich B, Bakulin A 2008 J. Acoust. Soc. Am. 124 859Google Scholar

    [68]

    Karpfinger F, Valero H P, Gurevich B, Bakulin A, Sinha B 2010 Geophysics 75 H19Google Scholar

    [69]

    王献忠, 吴卫国, 庞福振, 孔祥韶 2015 振动与冲击 34 13Google Scholar

    Wang X Z, Wu W G, Pang F Z, Kong X S 2015 J. Vibrat. Shock 34 13Google Scholar

    [70]

    Zharnikov T V, Syresin D E, Hsu C J 2013 J. Acoust. Soc. Am. 134 1739Google Scholar

    [71]

    Quintanilla F H, Lowe M, Craster R 2015 AIP Conf. Proc. 1650 739Google Scholar

    [72]

    Sinha, B K, Tiersten H F 1981 J. Appl. Phys. 52 7196Google Scholar

    [73]

    Jen C K, Safaai-Jazi A, Farnell W G 1986 IEEE T. Ultrason. Ferr. 33 634Google Scholar

    [74]

    Porter M B, Reiss E L 1985 J. Acoust. Soc. Am. 77 S13Google Scholar

    [75]

    Brazier-Smith P R, Scott J F M 1991 J. Sound Vib. 145 503Google Scholar

    [76]

    何世平, 汤渭霖, 范军 2005 声学学报 30 249Google Scholar

    He S P, Tang W L, Fan J 2005 Acta Acustica 30 249Google Scholar

    [77]

    Ivansson S 1992 J. Acoust. Soc. Am. 89 1894Google Scholar

    [78]

    Wang N Wang H Z 2010 J. Comput. Acoust. 18 159Google Scholar

    [79]

    Wang H Z, Wang N, Gao D Z 2012 J. Acoust. Soc. Am. 131 1047Google Scholar

    [80]

    Mccammon D F, Mcdaniel S T 1985 J. Acoust. Soc. Am. 77 499Google Scholar

    [81]

    Ewing M, Crary A P, Jr A M T 1934 Physics 5 165Google Scholar

    [82]

    Crary, A P 1954 EOS Transact. Am. Geophys. Union 35 293Google Scholar

    [83]

    Hunkins K 1960 J. Geophys. Res. 65 3459Google Scholar

    [84]

    Schwartz J 1970 Revue Decologie Et De Biologie. Du. Sol. 354

    [85]

    Timco G W, Frederking R M W 1996 Cold Reg. Sci. Technol. 24 1Google Scholar

    [86]

    Cox G F, Weeks W F 1988 Army Cold Regions Research & Engineering Laboratory Crrel Report 88 13

    [87]

    Eicken H, Krouse H R, Kadko D, Perovich D K 2002 J. Geophys. Res. 107 8046Google Scholar

    [88]

    Cox G F N Weeks W F 1974 J. Glaciol. 13 109Google Scholar

    [89]

    Johnston M Timco G W 2002 Proceedings of the 16 th IAHR International Symposium on Ice 2 194

    [90]

    Ackley S F, Hibler W D, Kugzruk F K, Kovacs A, Weeks W F 1974 Oceans IEEE 1 109Google Scholar

    [91]

    Andreas E L, Lange M A, Ackley S F, Wadhams P 1993 J. Geophys. Res-Oceans 98 12Google Scholar

    [92]

    Mcphee M G 2002 J. Geophys. Res-Oceans 107 11Google Scholar

    [93]

    Adolphs U 1999 J. Geophys. Res-Oceans 104 13Google Scholar

    [94]

    Robinson N J, Stevens C L, McPhee M G 2017 Geophys. Res. Lett. 44 1814Google Scholar

    [95]

    Ech-Cherif El-Kettani M, F Luppé, Guillet A 2004 Ultrasonics 42 807Google Scholar

    [96]

    Johnston M, Masterson D, Wright B 2009 Proceedings 20 th POAC Conference 9 120

    [97]

    Marical P, Ech-Cherif El-Kettani M, Predoi M V 2007 Ultrasonics 47 1Google Scholar

    [98]

    Ech-Cherif El-Kettani M, Marical P, Hamitouche Z 2009 IEEE T. Ultrason. Ferr. 56 2023Google Scholar

    [99]

    Oliver J, Crary A P, Cotell R 1954 EOS Transact. Am. Geophys. Union 35 282Google Scholar

    [100]

    Sutherland G Rabault J 2016 J. Geophys. Res-Oceans 121 1984Google Scholar

    [101]

    Marsan D, Weiss J, Larose E, Métaxian J 2012 J. Acoust. Soc. Am. 131 80Google Scholar

    [102]

    Marsan D, Weiss J, Moreau L, Gimbert F, Doble M, Larose E, Grangeon J 2019 J. Acoust. Soc. Am. 145 1600Google Scholar

    [103]

    Moreau L, Lachaud C, Thery R, Predoi M V, Marsan D, Larose E, Weiss J, Montagnat M 2017 J. Acoust. Soc. Am. 142 2873Google Scholar

    [104]

    Moreau L, Boué P, Serripierri A, Weiss J, Hollis D, Pondaven I, Vial B, Garambois S, Larose É, Helmstetter A, Stehly L, Hillers G, Gilbert O 2020 J. Geophys. Res-Oceans 125

  • [1] Ma Yu-Gang. Research advances in antimatter. Acta Physica Sinica, 2024, 73(19): 191101. doi: 10.7498/aps.73.20241020
    [2] Li Yu-Fan, Xue Wen-Qing, Li Yu-Chao, Zhan Yan-Hu, Xie Qian, Li Yan-Kai, Zha Jun-Wei. Research progress of flexible energy storage dielectric materials with sandwiched structure. Acta Physica Sinica, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [3] Feng Yun-Long, Hou Shang-Lin, Lei Jing-Li, Wu Gang, Yan Zu-Yong. Analysis of acoustic modes induced by backward stimulated Brillouin scattering in acoustic wave-guided single mode optical fibers. Acta Physica Sinica, 2024, 73(5): 054207. doi: 10.7498/aps.73.20231710
    [4] Yang Run-Heng, An Shun, Shang Wen, Deng Tao. Research progress of bio-inspired radiative cooling. Acta Physica Sinica, 2022, 71(2): 024401. doi: 10.7498/aps.71.20211854
    [5] Gao Dong-Bao, Zhu Ji-Lin, Zhang Sai, Zhou He-Feng, Zeng Xin-Wu. Rayleigh-Bloch mode based monolayer bend waveguide. Acta Physica Sinica, 2021, 70(3): 034301. doi: 10.7498/aps.70.20201270
    [6] Li Yan, He Hong, Dang Wei-Wu, Chen Xue-Lian, Sun Can, Zheng Jia-Lu. Research progress of light irradiation stability of functional layers in perovskite solar cells. Acta Physica Sinica, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [7] Wang Hong-Fei, Xie Bi-Ye, Zhan Peng, Lu Ming-Hui, Chen Yan-Feng. Research progress of topological photonics. Acta Physica Sinica, 2019, 68(22): 224206. doi: 10.7498/aps.68.20191437
    [8] Dou Jian-Peng, Li Hang, Pang Xiao-Ling, Zhang Chao-Ni, Yang Tian-Huai, Jin Xian-Min. Research progress of quantum memory. Acta Physica Sinica, 2019, 68(3): 030307. doi: 10.7498/aps.68.20190039
    [9] Tian Yuan, Ge Hao, Lu Ming-Hui, Chen Yan-Feng. Research advances in acoustic metamaterials. Acta Physica Sinica, 2019, 68(19): 194301. doi: 10.7498/aps.68.20190850
    [10] You Jia-Xue,  Wang Jin-Cheng,  Wang Li-Lin,  Wang Zhi-Jun,  Li Jun-Jie,  Lin Xin. Recent progress of solidification of suspensions. Acta Physica Sinica, 2019, 68(1): 018101. doi: 10.7498/aps.68.20181645
    [11] Ding Chang-Lin, Dong Yi-Bao, Zhao Xiao-Peng. Research advances in acoustic metamaterials and metasurface. Acta Physica Sinica, 2018, 67(19): 194301. doi: 10.7498/aps.67.20180963
    [12] Jia Ning,  Wang Shan-Peng,  Tao Xu-Tang. Research progress of mid-and far-infrared nonlinear optical crystals. Acta Physica Sinica, 2018, 67(24): 244203. doi: 10.7498/aps.67.20181591
    [13] Lu Qi, Lyu Hong-Ming, Wu Xiao-Ming, Wu Hua-Qiang, Qian He. Research progress of graphene radio frequency devices. Acta Physica Sinica, 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [14] Zhang Bo, Wang Wei-Hua. Research progress of metallic plastic. Acta Physica Sinica, 2017, 66(17): 176411. doi: 10.7498/aps.66.176411
    [15] Li Zhen-Xing, Li Ke, Shen Jun, Dai Wei, Gao Xin-Qiang, Guo Xiao-Hui, Gong Mao-Qiong. Progress of room temperature magnetic refrigeration technology. Acta Physica Sinica, 2017, 66(11): 110701. doi: 10.7498/aps.66.110701
    [16] Zheng Xin-Qi, Shen Jun, Hu Feng-Xia, Sun Ji-Rong, Shen Bao-Gen. Research progress in magnetocaloric effect materials. Acta Physica Sinica, 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [17] Shen Hao, Li Dong-Sheng, Yang De-Ren. Research progress of silicon light source. Acta Physica Sinica, 2015, 64(20): 204208. doi: 10.7498/aps.64.204208
    [18] Liang Bin, Yuan Ying, Cheng Jian-Chun. Recent advances in acoustic one-way manipulation. Acta Physica Sinica, 2015, 64(9): 094305. doi: 10.7498/aps.64.094305
    [19] Zhao Na, Liu Jian-She, Li Tie-Fu, Chen Wei. Progress of coupled superconducting qubits. Acta Physica Sinica, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [20] Han Yong, Wang Ti-Jian, Rao Rui-Zhong, Wang Ying-Jian. Progress in the study of physic-optics characteristics of atmospheric aerosols. Acta Physica Sinica, 2008, 57(11): 7396-7407. doi: 10.7498/aps.57.7396
Metrics
  • Abstract views:  6909
  • PDF Downloads:  143
  • Cited By: 0
Publishing process
  • Received Date:  20 October 2021
  • Accepted Date:  23 November 2021
  • Available Online:  26 January 2022
  • Published Online:  20 April 2022

/

返回文章
返回