Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation and property calculation for FA1–xCsx PbI3–y Bry: Structures and optoelectronical properties

Lu Hui-Dong Han Hong-Jing Liu Jie

Citation:

Simulation and property calculation for FA1–xCsx PbI3–y Bry: Structures and optoelectronical properties

Lu Hui-Dong, Han Hong-Jing, Liu Jie
PDF
HTML
Get Citation
  • Formamdinium lead triiodide (FAPbI3) perovskite has developed as a promising candidate in solar cells for its excellent optoelectronic property. However, the poor environmental stability is still a critical hurdle for its further commercial application. Element doping is an effective method of improving the stability of FAPbI3 materials. It has been reported that the FA1–xCsxPbI3–yBry stability for heat and water resistance were greatly improved by Cs cations and Br anions co-doping. In this study, we perform first-principles calculations to systematically investigate the crystal structures, electronic structures, and optical properties of FA1–xCsxPbI3–yBry. We obtain several stable crystal structures of FA1–xCsxPbI3–yBry (x = 0.125, y = 0—0.6) in the cubic phase for different ratios of Cs cations to Br anions. By analyzing the structures of these mixed ion perovskites, it is revealed that the lattice parameters decrease linearly with the increase of concentration of Cs cations and Br anions, which is consistent with previous experimental result. In this work, the formation energy difference (∆E) is calculated and our results show that the mixing of Cs cations and Br anions could increase the thermodynamic stability compared with pure FAPbI3. The FA0.875Cs0.125PbI2.96Br0.04 is found to be the most stable in all composites investigated. Furthermore, the band gap, hole and electron effective mass increase with increasing proportion of Br anions, indicating an effective strategy for extending the absorption range of FAPbI3 perovskites into the ultraviolet of the solar spectrum, thereby affecting the carrier transport mechanism in this material. Density of states (DOS) analysis indicates that the DOS of valence band edge increases with increasing proportion of Br anions and enhancing transitions between the valence and conduction bands. Finally, the absorption rate, carrier collection efficiency, external quantum efficiency, short-circuit current density, open circuit voltage and volt-ampere characteristics for the planar structure perovskite solar cell are analyzed by the equivalent optical admittance method. For the FA1–xCsxPbI3–yBry (x = 0.125, y = 0.04, thickness = 0.5—1.0 μm) solar cell, the short-circuit current density and the open circuit voltage are estimated at about 24.7 mA·cm–2 and 1.06 V. It is demonstrated that the co-doping Cs cations and Br anions can improve the stability of the system without reducing short-circuit current density, which may provide some theoretical guidance in preparing the perovskite solar cells with high efficiency and excellent stability.
      Corresponding author: Han Hong-Jing, 2016990036@qhu.edu.cn
    • Funds: Project supported by the Science and Technology Planning Project of Qinghai Province, China (Grant No. 2019-ZJ-937Q) and the Shanghai Aerospace Science and Technology Innovation Fund, China (Grant No. SAST2017-139)
    [1]

    Burschka J, Pellet N, Moon S J, Humphry B R, Gao P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316Google Scholar

    [2]

    Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J S 2015 Science 347 967Google Scholar

    [3]

    Wang C H, Zhang C J, Tong S C, Shen J Q, Wang C, Li Y Z, Xiao S, He J, Zhang J, Gao Y L, Yang J L 2017 J. Phys. Chem. C 121 6575Google Scholar

    [4]

    Zhang W H, Xiong J, Jiang L, Wang J Y, Mei T, Wang X B, Gu H S, Daoud W A, Li J H 2017 Appl. Mater. Interfaces 9 38467Google Scholar

    [5]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [6]

    Park N G, Zhu K 2020 Nat. Rev. Mater. 5 333Google Scholar

    [7]

    Green M A, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M, Ho-Baillie A W Y 2019 Prog. Photovolt. Res. Appl. 27 565Google Scholar

    [8]

    Chen H, Ye F, Tang W T, He J J, Yin M S, Wang Y B, Xie F X, Bi E B, Yang X D, Gratzel M, Han L Y 2017 Nature 550 92Google Scholar

    [9]

    Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z G, You J B 2019 Nat. Photonics 13 460Google Scholar

    [10]

    Mellouhi F E, Bentria E T, Rashkeev S N, Kais S, Alharbi F H 2016 Sci. Rep. 6 30305Google Scholar

    [11]

    Lin R X, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar

    [12]

    Lee J W, Dai Z Z, Lee C, Lee H M, Han T H, Marco N D, Lin O, Choi C S, Dunn B S, Koh J, Carlo D D, Ko J H, Maynard H D, Yang Y 2018 J. Am. Chem. Soc. 140 6317Google Scholar

    [13]

    毕富珍, 郑晓, 任志勇 2019 物理化学学报 35 69Google Scholar

    Bi F Z, Zheng X, Reng Z Y 2019 Acta Phys.-Chim. Sin. 35 69Google Scholar

    [14]

    Huang Y, Li L, Liu Z H, Jiao H Y, He Y Q, Wang X G, Zhu R, Wang D, Sun J L, Chen Q, Zhou H P 2017 J. Mater. Chem. A 5 8537Google Scholar

    [15]

    Li L, Liu N, Xu Z Q, Chen Q, Wang X D, Zhou H P 2017 ACS Nano 11 8804Google Scholar

    [16]

    Li N X, Luo Y Q, Chen Z H, Niu X X, Zhang X, Lu J Z, Kumar R S, Jiang J K, Liu H F, Guo X, Lai B, Brocks G, Chen Q, Tao S X, Fenning D P, Zhou H P 2020 Joule 4 1Google Scholar

    [17]

    Yi C Y, Luo J S, Meloni S, Boziki A, Astani N A, Gratzel C, Zakeeruddin S M, Rothlisberger U, Gratzel M 2016 Energy Environ. Sci. 9 656Google Scholar

    [18]

    Wang L G, Zhou H P, Hu J N, Huang B L, Sun M Z, Dong B W, Zheng J G H, Huang Y, Chen Y H, LI L, Xu Z Q, Li N G, Liu Z, Chen Q, Sun L D, Yan C H 2019 Science 363 265Google Scholar

    [19]

    Liu W, Liu N J, Ji S L, Hua H F, Ma Y H, Hu R Y, Zhang J, Chu L, Li X A, Huang W 2020 Nano-Micro Lett. 12 119Google Scholar

    [20]

    Correa-Baena J B, Luo Y Q, Brenner T M, Snaider J, Sun S J, Li X Y, Jensen M A, Hartono N P T, Nienhaus L, Wieghold S, Poindexter J R, Wang S, Meng Y S, Wang T, Lai B, Holt M V, Cai Z H, Bawendi M G, Huang L B, Buonassisi T, Fenning D P 2019 Science 363 627Google Scholar

    [21]

    Charles B, Weller M T, Rieger S, Hatcher L E, Henry P F, Feldmann J, Wolverson D, Wilson C C 2020 Chem. Mater. 32 2282Google Scholar

    [22]

    Nakane A, Tampo H, Tamakoshi M, Fujimoto S, Kim K M, Kim S, Shibata H, Niki S, Fujiwara H 2016 J. Appl. Phys. 120 064505Google Scholar

    [23]

    Dewan R, Vasilev I, Jovanov V, Knipp D 2011 J. Appl. Phys. 110 013101Google Scholar

    [24]

    石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波 2015 物理学报 64 038402Google Scholar

    Shi J J, Wei H Y, Zhu L F, Xu X, Xu Y Z, Lü S T, Wu H J, Luo Y H, Li D M, Bo M Q 2015 Acta Phys. Sin. 64 038402Google Scholar

    [25]

    Kato Y, Fujimoto S, Kozawa M, Fujiwara H 2019 Phys. Rev. Appl. 12 024039Google Scholar

    [26]

    Weller M T, Weber O J, Frost J M, Walsh A 2015 J. Phys. Chem. Lett. 6 3209Google Scholar

    [27]

    Kato M, Fujiseki T, Miyadera T, Sugita T, Fujimoto S, Tamakoshi M, Chikamatsu M, Fujiwara H 2017 J. Appl. Phys. 121 115501Google Scholar

    [28]

    Eperon G E, Stranks S D, Menelaou S, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [29]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [30]

    柴磊, 钟敏 2016 物理学报 65 237902Google Scholar

    Chai L, Zhong M 2016 Acta Phys. Sin. 65 237902Google Scholar

    [31]

    王福芝, 谭占鳌, 戴松元, 李永舫 2015 物理学报 64 038401Google Scholar

    Wang F Z, Tan Z A, Dai S Y, Li Y F 2015 Acta Phys. Sin. 64 038401Google Scholar

    [32]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar

    [33]

    Pham N D, Zhang C M, Tiong V T, Zhang S L, Will G, Bou A, Bisquert J, Shaw P E, Du A J, Wilson G J, Wang H X 2019 Adv. Funct. Mater. 29 1806479Google Scholar

    [34]

    Tavakoli M M, Yadav P, Tavakoli R, Kong J 2018 Adv. Energy Mater. 1800794

    [35]

    Nazarenko O, Yakunin S, Morad V, Cherniukh I, Kovalenko V 2017 NPG Asia Mater. 9 e373Google Scholar

    [36]

    刘娜, 危阳, 马新国, 祝林, 徐国旺, 楚亮, 黄楚云 2017 物理学报 66 057103Google Scholar

    Liu N, Wei Y, Ma X G, Xu G W, Chu L, Huang C Y 2017 Acta Phys. Sin. 66 057103Google Scholar

    [37]

    蒋泵, 陈思良, 崔晓磊, 胡紫婷, 李跃, 张笑铮, 吴康敬, 王文贞, 蒋最敏, 洪峰, 马忠权, 赵磊, 徐飞, 徐闰, 詹义强 2019 物理学报 68 246801Google Scholar

    Jiang B, Chen S L, Cui X L, Hu Z T, Li Y, Zhang X Z, Wu K J, Wang W Z, Jiang Z M, Hong F, Ma Z Q, Zhao L, Xu F, Xu R, Zhan Y Q 2019 Acta Phys. Sin. 68 246801Google Scholar

  • 图 1  (a) α-FAPbI3的赝立方2 × 2 × 2超胞; (b) 正交晶格的第一布里渊区中各对称点和对称轴的记号示意图; (c) 利用图(b)中k空间路径得到α-FAPbI3的2 × 2 × 2超胞的能带图和态密度; (d) 钙钛矿太阳电池结构示意图

    Figure 1.  (a) Pseudocubic crystal structures of α-FAPbI3 with 2 × 2 × 2 supercell; (b) the first Brillouin zone for the orthorhombic lattice of α-FAPbI3 and the k-path (red line) used to plot the band structure in the present paper; (c) band structure and DOS of α-FAPbI3 calculated using 2 × 2 × 2 supercell; (d) schematic diagram of perovskite solar cell structure.

    图 2  Cs+和Br不同掺杂比例前后能量的变化∆E和2 × 2 × 2超胞体积.

    Figure 2.  Calculated total energy change ∆E and 2 × 2 × 2 supercell volume for different doping ratio of Cs and Br.

    图 3  禁带宽度、电子和空穴有效质量

    Figure 3.  Band gap and effective masses of electron and hole versus different Bromine content.

    图 4  FA1–xCsxPbI3–yBry的能带结构、总态密度和分态密度 (a), (d) FA0.875Cs0.125PbI3; (b), (e) FAPbI2.96Br0.04; (c), (f) FA0.875Cs0.125PbI2.96Br0.04

    Figure 4.  Band structure, total and partial density of states of α perovskite phase: (a), (d) FA0.875Cs0.125PbI3; (b), (e) FAPbI2.96Br0.04; (c), (f) FA0.875Cs0.125PbI2.96Br0.04.

    图 5  FA1–xCsxPbI3–yBry的光吸收谱

    Figure 5.  Absorption spectra of FA1–xCsxPbI3–yBry.

    图 6  FAPbI3钙钛矿太阳电池的光电性能参数 (a) 吸收系数和AM1.5 G光谱; (b) 不同厚度的FAPbI3的吸收率; (c) 由FAPbI3的吸收系数α(ω)计算不同载流子收集长度(ΔZ)下载流子的收集效率H(λ); (d) 外量子效率; (e) 积分电流密度; (f) J-V特性

    Figure 6.  Photovoltaic performance parameters of FAPbI3 perovskite solar cell: (a) Absorption coefficient and AM1.5 G illumination; (b) absorptance spectra of the FAPbI3 layer; (c) carrier collection efficiency H(λ) calculated from the α(ω) of the FAPbI3 using different values of carrier collection length (ΔZ); (d) external quantum efficiency spectrum; (e) integrated current density; (f) J-V curves

    图 7  短路电流密度随FA1–xCsxPbI3–yBry厚度的变化

    Figure 7.  Variation of the short circuit current density with the perovskite film thickness.

    表 1  FA1–xCsxPbI3–yBry太阳电池的电学参数

    Table 1.  Photovoltaic parameters of the pure FA and the dopes Cs and Br perovskite solar cells.

    CompositionJsc/(mA·cm–2)Voc/VFF/%η/%
    FAPbI3 (experiment)24.71.0677.520.3
    FAPbI325.21.0681.221.7
    FA0.875Cs0.125PbI323.61.0682.220.6
    FAPbI2.96Br0.0425.31.0678.821.1
    FA0.875Cs0.125PbI2.96Br0.0424.71.0682.421.6
    DownLoad: CSV
  • [1]

    Burschka J, Pellet N, Moon S J, Humphry B R, Gao P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316Google Scholar

    [2]

    Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J S 2015 Science 347 967Google Scholar

    [3]

    Wang C H, Zhang C J, Tong S C, Shen J Q, Wang C, Li Y Z, Xiao S, He J, Zhang J, Gao Y L, Yang J L 2017 J. Phys. Chem. C 121 6575Google Scholar

    [4]

    Zhang W H, Xiong J, Jiang L, Wang J Y, Mei T, Wang X B, Gu H S, Daoud W A, Li J H 2017 Appl. Mater. Interfaces 9 38467Google Scholar

    [5]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [6]

    Park N G, Zhu K 2020 Nat. Rev. Mater. 5 333Google Scholar

    [7]

    Green M A, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M, Ho-Baillie A W Y 2019 Prog. Photovolt. Res. Appl. 27 565Google Scholar

    [8]

    Chen H, Ye F, Tang W T, He J J, Yin M S, Wang Y B, Xie F X, Bi E B, Yang X D, Gratzel M, Han L Y 2017 Nature 550 92Google Scholar

    [9]

    Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z G, You J B 2019 Nat. Photonics 13 460Google Scholar

    [10]

    Mellouhi F E, Bentria E T, Rashkeev S N, Kais S, Alharbi F H 2016 Sci. Rep. 6 30305Google Scholar

    [11]

    Lin R X, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar

    [12]

    Lee J W, Dai Z Z, Lee C, Lee H M, Han T H, Marco N D, Lin O, Choi C S, Dunn B S, Koh J, Carlo D D, Ko J H, Maynard H D, Yang Y 2018 J. Am. Chem. Soc. 140 6317Google Scholar

    [13]

    毕富珍, 郑晓, 任志勇 2019 物理化学学报 35 69Google Scholar

    Bi F Z, Zheng X, Reng Z Y 2019 Acta Phys.-Chim. Sin. 35 69Google Scholar

    [14]

    Huang Y, Li L, Liu Z H, Jiao H Y, He Y Q, Wang X G, Zhu R, Wang D, Sun J L, Chen Q, Zhou H P 2017 J. Mater. Chem. A 5 8537Google Scholar

    [15]

    Li L, Liu N, Xu Z Q, Chen Q, Wang X D, Zhou H P 2017 ACS Nano 11 8804Google Scholar

    [16]

    Li N X, Luo Y Q, Chen Z H, Niu X X, Zhang X, Lu J Z, Kumar R S, Jiang J K, Liu H F, Guo X, Lai B, Brocks G, Chen Q, Tao S X, Fenning D P, Zhou H P 2020 Joule 4 1Google Scholar

    [17]

    Yi C Y, Luo J S, Meloni S, Boziki A, Astani N A, Gratzel C, Zakeeruddin S M, Rothlisberger U, Gratzel M 2016 Energy Environ. Sci. 9 656Google Scholar

    [18]

    Wang L G, Zhou H P, Hu J N, Huang B L, Sun M Z, Dong B W, Zheng J G H, Huang Y, Chen Y H, LI L, Xu Z Q, Li N G, Liu Z, Chen Q, Sun L D, Yan C H 2019 Science 363 265Google Scholar

    [19]

    Liu W, Liu N J, Ji S L, Hua H F, Ma Y H, Hu R Y, Zhang J, Chu L, Li X A, Huang W 2020 Nano-Micro Lett. 12 119Google Scholar

    [20]

    Correa-Baena J B, Luo Y Q, Brenner T M, Snaider J, Sun S J, Li X Y, Jensen M A, Hartono N P T, Nienhaus L, Wieghold S, Poindexter J R, Wang S, Meng Y S, Wang T, Lai B, Holt M V, Cai Z H, Bawendi M G, Huang L B, Buonassisi T, Fenning D P 2019 Science 363 627Google Scholar

    [21]

    Charles B, Weller M T, Rieger S, Hatcher L E, Henry P F, Feldmann J, Wolverson D, Wilson C C 2020 Chem. Mater. 32 2282Google Scholar

    [22]

    Nakane A, Tampo H, Tamakoshi M, Fujimoto S, Kim K M, Kim S, Shibata H, Niki S, Fujiwara H 2016 J. Appl. Phys. 120 064505Google Scholar

    [23]

    Dewan R, Vasilev I, Jovanov V, Knipp D 2011 J. Appl. Phys. 110 013101Google Scholar

    [24]

    石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波 2015 物理学报 64 038402Google Scholar

    Shi J J, Wei H Y, Zhu L F, Xu X, Xu Y Z, Lü S T, Wu H J, Luo Y H, Li D M, Bo M Q 2015 Acta Phys. Sin. 64 038402Google Scholar

    [25]

    Kato Y, Fujimoto S, Kozawa M, Fujiwara H 2019 Phys. Rev. Appl. 12 024039Google Scholar

    [26]

    Weller M T, Weber O J, Frost J M, Walsh A 2015 J. Phys. Chem. Lett. 6 3209Google Scholar

    [27]

    Kato M, Fujiseki T, Miyadera T, Sugita T, Fujimoto S, Tamakoshi M, Chikamatsu M, Fujiwara H 2017 J. Appl. Phys. 121 115501Google Scholar

    [28]

    Eperon G E, Stranks S D, Menelaou S, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [29]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [30]

    柴磊, 钟敏 2016 物理学报 65 237902Google Scholar

    Chai L, Zhong M 2016 Acta Phys. Sin. 65 237902Google Scholar

    [31]

    王福芝, 谭占鳌, 戴松元, 李永舫 2015 物理学报 64 038401Google Scholar

    Wang F Z, Tan Z A, Dai S Y, Li Y F 2015 Acta Phys. Sin. 64 038401Google Scholar

    [32]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar

    [33]

    Pham N D, Zhang C M, Tiong V T, Zhang S L, Will G, Bou A, Bisquert J, Shaw P E, Du A J, Wilson G J, Wang H X 2019 Adv. Funct. Mater. 29 1806479Google Scholar

    [34]

    Tavakoli M M, Yadav P, Tavakoli R, Kong J 2018 Adv. Energy Mater. 1800794

    [35]

    Nazarenko O, Yakunin S, Morad V, Cherniukh I, Kovalenko V 2017 NPG Asia Mater. 9 e373Google Scholar

    [36]

    刘娜, 危阳, 马新国, 祝林, 徐国旺, 楚亮, 黄楚云 2017 物理学报 66 057103Google Scholar

    Liu N, Wei Y, Ma X G, Xu G W, Chu L, Huang C Y 2017 Acta Phys. Sin. 66 057103Google Scholar

    [37]

    蒋泵, 陈思良, 崔晓磊, 胡紫婷, 李跃, 张笑铮, 吴康敬, 王文贞, 蒋最敏, 洪峰, 马忠权, 赵磊, 徐飞, 徐闰, 詹义强 2019 物理学报 68 246801Google Scholar

    Jiang B, Chen S L, Cui X L, Hu Z T, Li Y, Zhang X Z, Wu K J, Wang W Z, Jiang Z M, Hong F, Ma Z Q, Zhao L, Xu F, Xu R, Zhan Y Q 2019 Acta Phys. Sin. 68 246801Google Scholar

  • [1] Zhang Ying-Nan, Zhang Min, Zhang Pai, Hu Wen-Bo. Investigation of electronic structure and optoelectronic properties of Si-doped β-Ga2O3 using GGA+U method based on first-principle. Acta Physica Sinica, 2024, 73(1): 017102. doi: 10.7498/aps.73.20231147
    [2] Yao Yi-Zhou, Cao Dan, Yan Jie, Liu Xue-Yin, Wang Jian-Feng, Jiang Zhou-Ting, Shu Hai-Bo. A first-principles study on environmental stability and optoelectronic properties of bismuth oxychloride/ cesium lead chloride van der Waals heterojunctions. Acta Physica Sinica, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [3] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [4] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells. Acta Physica Sinica, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [5] Liang Xiao-Juan, Cao Yu, Cai Hong-Kun, Su Jian, Ni Jian, Li Juan, Zhang Jian-Jun. Simulation and architectural design for Schottky structure perovskite solar cells. Acta Physica Sinica, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [6] Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang. First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Acta Physica Sinica, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [7] Wu Ruo-Xi, Liu Dai-Jun, Yu Yang, Yang Tao. First-principles investigations on structure and thermodynamic properties of CaS under high pressures. Acta Physica Sinica, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [8] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [9] Cheng Chao-Qun, Li Gang, Zhang Wen-Dong, Li Peng-Wei, Hu Jie, Sang Sheng-Bo, Deng Xiao. Electronic structures and optical properties of boron and phosphorus doped β-Si3N4. Acta Physica Sinica, 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [10] Shi Yan-Li, Han Wei, Lu Tie-Cheng, Chen Jun. First principles study of the electronic and optical properties of silica glass with hydroxyl group. Acta Physica Sinica, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [11] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [12] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [13] Yang Chun-Yan, Zhang Rong, Zhang Li-Min, Ke Xiang-Wei. Electronic structure and optical properties of 0.5NdAlO3-0.5CaTiO3 from first-principles calculation. Acta Physica Sinica, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [14] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [15] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [16] Yu Ben-Hai, Liu Mo-Lin, Chen Dong. First principles study of structural, electronic and elastic properties of Mg2 Si polymorphs. Acta Physica Sinica, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [17] Su Rui, He Jie, Chen Jia-Sheng, Guo Ying-Jie. First principles study of the electronic structure and photoelectric properties of rutile vanadium dioxcide. Acta Physica Sinica, 2011, 60(10): 107101. doi: 10.7498/aps.60.107101
    [18] Liu Na-Na, Song Ren-Bo, Sun Han-Ying, Du Da-Wei. The electronic structure and thermodynamic properties of Mg2Sn from first-principles calculations. Acta Physica Sinica, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [19] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
Metrics
  • Abstract views:  7790
  • PDF Downloads:  223
  • Cited By: 0
Publishing process
  • Received Date:  24 August 2020
  • Accepted Date:  24 September 2020
  • Available Online:  26 January 2021
  • Published Online:  05 February 2021

/

返回文章
返回