Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of Fe-Al alloy layer on CLAM steel

Wei Bing-Jun Hu Li Xiang Xin Yang Fei-Long Zhang Gui-Kai Wang Huan

Citation:

Preparation of Fe-Al alloy layer on CLAM steel

Wei Bing-Jun, Hu Li, Xiang Xin, Yang Fei-Long, Zhang Gui-Kai, Wang Huan
PDF
HTML
Get Citation
  • Reduced activation ferritic/martensitic steel is one of the candidate materials for tritium breeding module in the fusion reactor. In order to control the permeability of tritium in an acceptable range, coating with low hydrogen isotope permeability, known as tritium permeation barrier, is usually prepared on the surface of such structural materials. The FeAl/Al2O3 is the first choice of tritium permeation barrier for many countries, because of its fine performance of high permeation reduction factor, corrosion resistance and high-temperature resistance. The surface morphology and microstructure of Fe-Al infiltrated layer have important influence on the quality of Al2O3 coating. In this study, Al coating on the surface of CLAM steel is prepared by electroplating of aluminum from AlCl3-EMIC. Then the Fe-Al infiltrated layer is obtained by diffusion between Al and substrate by annealing. The effects of annealing time and temperature on the microstructure of Fe-Al infiltrated layer are studied by X-ray diffraction, scanning electron microscope and energy dispersive spectrometer. The results show that 20-μm-thick aluminum coating is obtained on the CLAM steel surface by electroplating. The Al coating is uniform and compact, and the size of its surface columnar grain decreases with electroplating current density increasing. Annealing results show that neither hole nor gap is observed between the Fe-Al infiltrated layer and the substrate. In addition, the infiltrated layer is found to be tightly bound to the substrate with a thickness ranging from 7 μm to 45 μm, depending on the annealing parameters. At the initial stage of annealing, Cr enriched Fe-Al alloy is formed evidently. However, such a Cr enrichment disappears at higher annealing temperature or longer annealing time due to diffusion. The surface of infiltrated layer changes from aluminum-rich phase to aluminum-poor phase, and its thickness increases with annealing time or temperature rising. The temperature dependence of the growth rate of Fe-Al infiltrated layer can be described by Arrhenius equation. At this time, the Arrhenius activation energy of aluminization on CLAM steel is calculated to be 78.48 kJ/mol. At 640 ℃ and 760 ℃, the growth of Fe-Al infiltrated layer is controlled by the grain boundary as well as the volume diffusion. When the reasonable thickness and microstructure of Fe-Al alloy layer are used and annealing time or temperature keeps as low as possible, the optimal annealing temperature and time are 700 ℃/10 h, respectively.
      Corresponding author: Wang Huan, wanghuan_2001@163.com
    • Funds: Project supported by the National Magnetic Confinement Fusion Science Program (Grant No. 2018YFE0313100), the National Natural Science Foundation of China (Grant No. 11975213), and the Presidential Foundation of China Academy of Engineering Physics (Grant No. YZJJLX2017008)
    [1]

    Jitsukawa S, Kimura A, Kohyama A, Klueh R L, Tavassoli A A, van der Schaaf B, Odette G R, Rensman J W, Victoria M, Petersen C 2004 J. Nucl. Mater. 329 39Google Scholar

    [2]

    Kumar E R, Vyas K N, Jayakumar T 2016 Fusion Eng. Des. 109 1522Google Scholar

    [3]

    丁兆楠, 杨义涛, 宋银, 张丽卿, 缑洁, 张崇宏, 罗广南 2017 物理学报 66 112501Google Scholar

    Ding Z N, Yang Y T, Song Y, Zhang L Q, Gou J, Zhang C H, Luo G N 2017 Acta Phys. Sin. 66 112501Google Scholar

    [4]

    Krauss W, Konys J, Wulf S E 2014 J. Nucl. Mater. 455 522Google Scholar

    [5]

    范东军 2018 硕士学位论文 (绵阳: 中国工程物理研究院)

    Fan D J 2018 M. S. Thesis (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [6]

    Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229Google Scholar

    [7]

    Yang H G, Zhan Q, Zhao W W, Yuan X M, Hu Y, Han Z B 2011 J. Nucl. Mater. 417 1237Google Scholar

    [8]

    Xiang X, Wang X L, Zhang G K, Tang T, Lai X C 2015 Int. J. Hydrogen Energy 40 3697Google Scholar

    [9]

    Purushothaman J, Ramaseshan R, Albert S K, Rajendran, R, Gowrishankar N, Ramasubbu V, Murugesan S, Dasgupta A, Jayakumar T 2015 Fusion Eng. Des. 101 154Google Scholar

    [10]

    张桂凯, 向鑫, 杨飞龙 2015 核化学与放射化学 37 310Google Scholar

    Zhang G K, Xiang X, Yang F L 2015 J. Nuclear Radiochem. 37 310Google Scholar

    [11]

    袁晓明, 杨洪广, 赵崴巍 2015 材料导报 29 66Google Scholar

    Yuan X M, Yang H G, Zhao W W 2015 Mater. Rev. 29 66Google Scholar

    [12]

    Purushothaman J, Ramaseshan R, Albert S K, Rajendran R, Murugesan N, Ramesh C, Gowrishankar N 2017 Surf. Coat. Tech. 325 697Google Scholar

    [13]

    Chen J, Li X F, Hua P, Wang C Y, Chen K, Wu Y C, Zhou W 2017 Fusion Eng. Des. 125 57Google Scholar

    [14]

    Wulf S E, Holstein N, Krauss W, Konys J 2013 Fusion Eng. Des. 88 2530Google Scholar

    [15]

    Zhang G K, Li J, Chen C A, Dou S P, Ling G P 2011 J. Nucl. Mater. 417 1245Google Scholar

    [16]

    Zhang G K, Chen C A, Luo D L, Wang X L 2012 Fusion Eng. Des. 87 1370Google Scholar

    [17]

    张胜涛 2011 电镀实用技术 (北京: 中国纺织出版社) 第32页

    Zhang S T 2011 Practical Technology of Electroplating (Beijing: China Textile & Apparel Press) p32 (in Chinese)

    [18]

    张桂凯, 李炬, 陈长安, 向鑫, 凌国平 2010 稀有金属材料与工程 39 81

    Zhang G K, Li J, Chen C A, Xiang X, Ling G P 2010 Rare Metal Mat. Eng. 39 81

    [19]

    王兴庆, 隋永江, 吕海波 1998 上海大学学报 4 661

    Wang X Q, Sui Y J, Lv H B 1998 J. Shanghai Univ. 4 661

    [20]

    Xiang Z D, Datta P K 2004 Surf. Coat. Tech. 184 108Google Scholar

    [21]

    Mita M, Miura K, Takenaka T, Kajihara M, Kurakawa N, Sakamoto K 2006 Mat. Sci. Eng. B 126 37Google Scholar

    [22]

    胡林华, 戴松元, 王孔嘉 2003 物理学报 52 2135Google Scholar

    Hu L H, Dai S Y, Wang K J 2003 Acta Phys. Sin. 52 2135Google Scholar

    [23]

    张桂凯 2010 硕士学位论文(绵阳: 中国工程物理研究院)

    Zhang G K 2010 M. S. Thesis (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [24]

    张桂凯, 李炬, 陈长安 2009 金属学报 45 983Google Scholar

    Zhang G K, Li J, Chen C A 2009 Acta Metall. Sin. 45 983Google Scholar

    [25]

    李亚江, 王娟, U. A. Puskov, 马海军 2007 材料科学与工艺 15 469Google Scholar

    Li Y J, Wang J, Puskov U A, Ma H J 2007 Mater. Sci. Technol. 15 469Google Scholar

    [26]

    刘宗昌, 任慧平, 计云萍 2015 固态相变原理新论 (北京: 科学出版社) 第56页

    Liu Z C, Ren H P, Ji Y P 2015 New Theory of Solid Phase Transition (Beijing: Science Press) p56 (in Chinese)

    [27]

    Tanaka Y, Kajihara M, Watanabe Y 2007 Mat. Sci. Eng. A 445 355Google Scholar

    [28]

    Zhang Z G, Gesmundo F, Hou P Y, Niu Y 2006 Corro. Sci. 48 741Google Scholar

    [29]

    Tanigawa H, Gaganidze E, Hirose T, Ando M, Zinkle S J, Lindau R, Diegele E 2017 Nucl. Fusion 57 092004Google Scholar

    [30]

    Ravikirana, Mythili R, Raju S, Saibaba S, Paneerselvam G, Jayakumar T, Rajendrakumar E 2014 Bull. Mater. Sci. 37 1453Google Scholar

  • 图 1  不同电镀参数下铝镀层表面(a), (c)及截面(b), (d)形貌 (a), (b)电流密度为15 mA/cm2, 68 min; (c), (d) 电流密度为10 mA/cm2, 96 min

    Figure 1.  Surface (a), (c) and cross-sectional (b), (d) SEM micrographs of aluminum coatings under different electroplating parameters: (a), (b) Current density is 15 mA/cm2, 68 min; (c), (d) current density is 10 mA/cm2, 96 min.

    图 2  电镀电流为10 mA/cm2时铝镀层的XRD谱

    Figure 2.  XRD patterns of Al coating at 10 mA/cm2.

    图 3  不同温度热处理4 h后试样表面形貌 (a) 640 ℃; (b)图(a)中红色方框处局部放大; (c) 760 ℃

    Figure 3.  SEM micrographs (surface) of samples after annealing for 4 h at different temperatures: (a) 640 ℃; (b) magnification of the red box area in (a); (c) 760 ℃.

    图 4  不同温度下热处理4 h后试样SEM截面形貌及EDS元素分析结果, 其中SEM截面图中红线为线扫描位置, 白色箭头指示了相应EDS曲线图中虚线位置 (a), (d)温度为640 ℃; (b), (e) 温度为700 ℃; (c), (f) 温度为760 ℃

    Figure 4.  Cross-sectional SEM micrographs and EDS element analysis of samples after annealing for 4 h at different temperature. The red lines in the cross-sectional SEM micrographs are scanning lines, and the white arrows indicate the position of the dotted line in the corresponding EDS graphs. (a), (d) The temperature is 640 ℃; (b), (e) the temperature is 700 ℃; (c), (f) the temperature is 760 ℃

    图 5  热处理4 h后的各试样XRD谱

    Figure 5.  XRD patterns of samples after annealing for 4 h.

    图 6  Fe-Al合金渗层厚度与热处理温度的关系图

    Figure 6.  Relationship between Fe-Al alloy’s thickness and annealing temperature.

    图 7  640 ℃热处理不同时间后试样SEM截面形貌及EDS元素分析结果, 其中SEM截面图中红线为线扫描位置, 白色箭头指示了相应EDS曲线图中虚线位置 (a), (d)处理时间为4 h; (b), (e) 处理时间为20 h; (c), (f) 处理时间为50 h

    Figure 7.  Cross-sectional SEM micrographs and EDS element analysis of samples after annealing at 640 ℃ for different time. The red lines in the cross-sectional SEM micrographs are scanning lines, and the white arrows indicate the position of the dotted line in the corresponding EDS graphs: (a), (d) Heating time is 4 h; (b), (e) heating time is 20 h; (c), (f) heating time is 50 h.

    图 8  640 ℃热处理后的各试样XRD谱

    Figure 8.  XRD patterns of samples after annealing at 640 ℃.

    图 9  760 ℃热处理不同时间后试样SEM截面形貌及EDS元素分析结果, 其中SEM截面图中红线为线扫描位置, 白色箭头指示了相应EDS曲线图中虚线位置 (a), (d)处理时间为4 h; (b), (e) 处理时间为10 h; (c), (f) 处理时间为20 h

    Figure 9.  Cross-sectional SEM micrographs and EDS element analysis of samples after annealing at 760 ℃ for different time. The red lines in the cross-sectional SEM micrographs are scanning lines, and the white arrows indicate the position of the dotted line in the corresponding EDS graphs. (a), (d) Heating time is 4 h; (b), (e) heating time is 10 h; (c), (f) heating time is 20 h.

    图 10  760 ℃热处理后的各试样XRD谱

    Figure 10.  XRD patterns of samples after annealing at 760 ℃.

    图 11  Fe-Al合金渗层厚度随热处理时间的变化曲线

    Figure 11.  Curves of Fe-Al alloy’s thickness vs. the annealing time.

    图 12  700 ℃/10 h试样表面、截面形貌和截面EDS线扫描结果

    Figure 12.  Surface (a), cross-sectional (b) SEM micrographs and EDS element analysis (c) of samples after annealing at 700 ℃ for 10 h.

    图 13  700 ℃/10 h试样XRD测试结果

    Figure 13.  XRD patterns of samples after annealing at 700 ℃ for 10 h.

    表 1  CLAM钢的化学成分(wt%)

    Table 1.  Chemical composition of CLAM steel (wt%).

    CrWVTaMnCSiFe
    9.001.500.200.070.450.100.01Bal
    DownLoad: CSV

    表 2  热处理条件

    Table 2.  Annealing condition.

    12345678
    Temperature/℃640640640700700760760760
    Annealing time/h4205041041020
    DownLoad: CSV

    表 3  640 ℃/20 h下试样表面EDS能谱分析(at%)

    Table 3.  EDS elemental analysis of sample surface at 640 ℃ for 4 h (at%).

    SpotAl KFe KCr KO KPossible
    195.744.26Al, Al2O3
    289.8210.18Al, Al2O3
    358.8116.721.5622.92
    457.3816.6925.93
    DownLoad: CSV

    表 4  640 ℃/20 h下试样截面EDS能谱分析(at%)

    Table 4.  EDS elemental analysis of sample cross section at 640 ℃ for 20 h (at%).

    SpotAl KFe KCr KO K
    1 (白点)62.8132.874.33
    2 (基体)79.688.322.35
    3 (渗层)67.5324.261.266.95
    DownLoad: CSV

    表 5  700 ℃/10 h试样表面EDS结果

    Table 5.  EDS elemental analysis of sample surface at 700 ℃ for 10 h (at%).

    SpotAl KFe LO K
    125.1674.84
    220.3712.4667.17
    371.4514.0014.55
    DownLoad: CSV
  • [1]

    Jitsukawa S, Kimura A, Kohyama A, Klueh R L, Tavassoli A A, van der Schaaf B, Odette G R, Rensman J W, Victoria M, Petersen C 2004 J. Nucl. Mater. 329 39Google Scholar

    [2]

    Kumar E R, Vyas K N, Jayakumar T 2016 Fusion Eng. Des. 109 1522Google Scholar

    [3]

    丁兆楠, 杨义涛, 宋银, 张丽卿, 缑洁, 张崇宏, 罗广南 2017 物理学报 66 112501Google Scholar

    Ding Z N, Yang Y T, Song Y, Zhang L Q, Gou J, Zhang C H, Luo G N 2017 Acta Phys. Sin. 66 112501Google Scholar

    [4]

    Krauss W, Konys J, Wulf S E 2014 J. Nucl. Mater. 455 522Google Scholar

    [5]

    范东军 2018 硕士学位论文 (绵阳: 中国工程物理研究院)

    Fan D J 2018 M. S. Thesis (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [6]

    Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229Google Scholar

    [7]

    Yang H G, Zhan Q, Zhao W W, Yuan X M, Hu Y, Han Z B 2011 J. Nucl. Mater. 417 1237Google Scholar

    [8]

    Xiang X, Wang X L, Zhang G K, Tang T, Lai X C 2015 Int. J. Hydrogen Energy 40 3697Google Scholar

    [9]

    Purushothaman J, Ramaseshan R, Albert S K, Rajendran, R, Gowrishankar N, Ramasubbu V, Murugesan S, Dasgupta A, Jayakumar T 2015 Fusion Eng. Des. 101 154Google Scholar

    [10]

    张桂凯, 向鑫, 杨飞龙 2015 核化学与放射化学 37 310Google Scholar

    Zhang G K, Xiang X, Yang F L 2015 J. Nuclear Radiochem. 37 310Google Scholar

    [11]

    袁晓明, 杨洪广, 赵崴巍 2015 材料导报 29 66Google Scholar

    Yuan X M, Yang H G, Zhao W W 2015 Mater. Rev. 29 66Google Scholar

    [12]

    Purushothaman J, Ramaseshan R, Albert S K, Rajendran R, Murugesan N, Ramesh C, Gowrishankar N 2017 Surf. Coat. Tech. 325 697Google Scholar

    [13]

    Chen J, Li X F, Hua P, Wang C Y, Chen K, Wu Y C, Zhou W 2017 Fusion Eng. Des. 125 57Google Scholar

    [14]

    Wulf S E, Holstein N, Krauss W, Konys J 2013 Fusion Eng. Des. 88 2530Google Scholar

    [15]

    Zhang G K, Li J, Chen C A, Dou S P, Ling G P 2011 J. Nucl. Mater. 417 1245Google Scholar

    [16]

    Zhang G K, Chen C A, Luo D L, Wang X L 2012 Fusion Eng. Des. 87 1370Google Scholar

    [17]

    张胜涛 2011 电镀实用技术 (北京: 中国纺织出版社) 第32页

    Zhang S T 2011 Practical Technology of Electroplating (Beijing: China Textile & Apparel Press) p32 (in Chinese)

    [18]

    张桂凯, 李炬, 陈长安, 向鑫, 凌国平 2010 稀有金属材料与工程 39 81

    Zhang G K, Li J, Chen C A, Xiang X, Ling G P 2010 Rare Metal Mat. Eng. 39 81

    [19]

    王兴庆, 隋永江, 吕海波 1998 上海大学学报 4 661

    Wang X Q, Sui Y J, Lv H B 1998 J. Shanghai Univ. 4 661

    [20]

    Xiang Z D, Datta P K 2004 Surf. Coat. Tech. 184 108Google Scholar

    [21]

    Mita M, Miura K, Takenaka T, Kajihara M, Kurakawa N, Sakamoto K 2006 Mat. Sci. Eng. B 126 37Google Scholar

    [22]

    胡林华, 戴松元, 王孔嘉 2003 物理学报 52 2135Google Scholar

    Hu L H, Dai S Y, Wang K J 2003 Acta Phys. Sin. 52 2135Google Scholar

    [23]

    张桂凯 2010 硕士学位论文(绵阳: 中国工程物理研究院)

    Zhang G K 2010 M. S. Thesis (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [24]

    张桂凯, 李炬, 陈长安 2009 金属学报 45 983Google Scholar

    Zhang G K, Li J, Chen C A 2009 Acta Metall. Sin. 45 983Google Scholar

    [25]

    李亚江, 王娟, U. A. Puskov, 马海军 2007 材料科学与工艺 15 469Google Scholar

    Li Y J, Wang J, Puskov U A, Ma H J 2007 Mater. Sci. Technol. 15 469Google Scholar

    [26]

    刘宗昌, 任慧平, 计云萍 2015 固态相变原理新论 (北京: 科学出版社) 第56页

    Liu Z C, Ren H P, Ji Y P 2015 New Theory of Solid Phase Transition (Beijing: Science Press) p56 (in Chinese)

    [27]

    Tanaka Y, Kajihara M, Watanabe Y 2007 Mat. Sci. Eng. A 445 355Google Scholar

    [28]

    Zhang Z G, Gesmundo F, Hou P Y, Niu Y 2006 Corro. Sci. 48 741Google Scholar

    [29]

    Tanigawa H, Gaganidze E, Hirose T, Ando M, Zinkle S J, Lindau R, Diegele E 2017 Nucl. Fusion 57 092004Google Scholar

    [30]

    Ravikirana, Mythili R, Raju S, Saibaba S, Paneerselvam G, Jayakumar T, Rajendrakumar E 2014 Bull. Mater. Sci. 37 1453Google Scholar

  • [1] Liu Wen-Shu, Gao Run-Liang, Feng Hong-Mei, Liu Yue-Yue, Huang Yi, Wang Jian-Bo, Liu Qing-Fang. Influence of magentic annealing temperature on microstructure and magnetic properties of NiCu alloy film. Acta Physica Sinica, 2020, 69(9): 097401. doi: 10.7498/aps.69.20191942
    [2] Hou Zhi-Peng, Su Feng, Wang Wen-Quan. High coercivity in Co79Zr18Cr3 magnet. Acta Physica Sinica, 2014, 63(8): 087501. doi: 10.7498/aps.63.087501
    [3] Qu Yan-Dong, Kong Xiang-Qing, Li Xiao-Jie, Yan Hong-Hao. Effect of thermal treatment on the structural phase transformation of the detonation-prepared TiO2 mixed crystal nanoparticles. Acta Physica Sinica, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [4] Qin Jie-Ming, Cao Jian-Ming, Jiang Da-Yong. Growth and characterization of the Mg0.57Zn0.43O alloy film. Acta Physica Sinica, 2013, 62(13): 138101. doi: 10.7498/aps.62.138101
    [5] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [6] Zhao Xue-Tong, Li Jian-Ying, Jia Ran, Li Sheng-Tao. The Effect of DC degradation and heat-treatment on defects in ZnO varistor. Acta Physica Sinica, 2013, 62(7): 077701. doi: 10.7498/aps.62.077701
    [7] Jia Xiao-Qin, He Zhi-Bing, Niu Zhon-Cai, He Xiao-Shan, Wei Jian-Jun, Li Rui, Du Kai. Influnce of heat treatment on the structure and optical properties of glow discharge polymer films. Acta Physica Sinica, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [8] Cai Ya-Nan, Cui Can, Shen Hong-Lei, Liang Da-Yu, Li Pei-Gang, Tang Wei-Hua. Effects of thermal treatments on the formation of nanocrystalline Si embedded in Si-rich oxide films. Acta Physica Sinica, 2012, 61(15): 157804. doi: 10.7498/aps.61.157804
    [9] Liao Guo-Jin, Luo Hong, Yan Shao-Feng, Dai Xiao-Chun, Chen Ming. Determination of the optical constants of the magnetron sputtered aluminum oxide films from the transmission spectra. Acta Physica Sinica, 2011, 60(3): 034201. doi: 10.7498/aps.60.034201
    [10] Ding Yan-Hong, Li Ming-Ji, Yang Bao-He, Ma Xu. AC magnetic properties of Fe15.38Co61.52Cu0.6Nb2.5Si11B9nanocrystalline soft magnetic alloy. Acta Physica Sinica, 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [11] Yu Huang-Zhong, Zhou Xiao-Ming, Deng Jun-Yu. Annealing treatment effects on the performances of solar cells based on different solvent blend systems. Acta Physica Sinica, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [12] Fan Ping, Zheng Zhuang-Hao, Liang Guang-Xing, Zhang Dong-Ping, Cai Xing-Min. Preparation and characterization of Sb2Te3 thermoelectric thin films by ion beam sputtering. Acta Physica Sinica, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [13] Li Sheng-Tao, Cheng Peng-Fei, Zhao-Lei, Li Jian-Ying. Study of intrinsic defects in ZnO varistor ceramics by dielectric spectroscopy. Acta Physica Sinica, 2009, 58(1): 523-528. doi: 10.7498/aps.58.523
    [14] Liang Li-Ping, Hao Jian-Ying, Qin Mei, Zheng Jian-Jun. Determination of the optical constants of sol-gel derived ZrO2 films simply form the transmission spectra. Acta Physica Sinica, 2008, 57(12): 7906-7911. doi: 10.7498/aps.57.7906
    [15] Wang Qing-Zhou, Lu Dong-Mei, Cui Chun-Xiang, Han Fu-Sheng. Effects of quenched-in vacancies on the reverse martensitic phase transformation temperature of the Cu-11.9Al-2.5Mn(wt%) shape memory alloy studied by internal friction. Acta Physica Sinica, 2008, 57(11): 7083-7087. doi: 10.7498/aps.57.7083
    [16] Zhan Xiao-Yuan, Zhang Yue, Qi Jun-Jie, Gu You-Song, Zheng Xiao-Lan. The magnetic interactions in FePt nanocomposite film. Acta Physica Sinica, 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [17] Li Wan-Wan, Sun Kang. Annealing of Cd0.9Zn0.1Te in cadmium vapor. Acta Physica Sinica, 2007, 56(11): 6514-6520. doi: 10.7498/aps.56.6514
    [18] Li Wan-Wan, Sun Kang. Study on the annealing of Cd1-xZnxTe in In vapor. Acta Physica Sinica, 2006, 55(4): 1921-1929. doi: 10.7498/aps.55.1921
    [19] Zhu Jun, Zhang Xing-Yuan, Lu Hong-Bo. Effect of annealing and polarizing temperature on the trap level distribution in nylon 11 film electrets. Acta Physica Sinica, 2005, 54(7): 3414-3417. doi: 10.7498/aps.54.3414
    [20] JI QI-GEN, DU YOU-WEI. THE ROLE OF GRAIN BOUNDARY IN THE Nd2Fe14B/α-Fe EXCHANGE COUPLING MAGNET. Acta Physica Sinica, 2000, 49(11): 2281-2286. doi: 10.7498/aps.49.2281
Metrics
  • Abstract views:  6156
  • PDF Downloads:  82
  • Cited By: 0
Publishing process
  • Received Date:  20 May 2020
  • Accepted Date:  11 September 2020
  • Available Online:  18 January 2021
  • Published Online:  05 February 2021

/

返回文章
返回