Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principles calculation of optical absorption and polarization properties of In doped h-LuFeO3

Zhang Xiao-Ya Song Jia-Xun Wang Xin-Hao Wang Jin-Bin Zhong Xiang-Li

Citation:

First principles calculation of optical absorption and polarization properties of In doped h-LuFeO3

Zhang Xiao-Ya, Song Jia-Xun, Wang Xin-Hao, Wang Jin-Bin, Zhong Xiang-Li
PDF
HTML
Get Citation
  • The h-LuFeO3 is a kind of narrow band gap hexagonal ferrite material, with a good application prospect in the field of ferroelectric photovoltaic. However, the low polarization intensity of h-LuFeO3 makes the recombination rate of photogenerated electrons and holes large, which is not conducive to the improvement of the efficiency of h-LuFeO3-based ferroelectric photovoltaic cells. In order to improve the ferroelectricity and optical absorption properties of h-LuFeO3, the first principles method is used to calculate the doping formation energy values of In atom at different positions of h-LuFeO3, and the most stable doping position is determined. The comparisons of band gap, optical absorption performance and polarization intensity among h-Lu1-xInxFeO3 (x = 0, 0.167, 0.333, 0.667) are made. With the increase of In doping, the cells of h-Lu1–xInxFeO3 stretch along the c-axis. The ratio of the lattice constant c/a increases from 1.94 at x = 0 to 2.04 at x = 0.667 when all the positions of In replace P1 position. Using the qualitative calculation of Berne effective charge, the results show that the ferroelectric polarization intensity of h-LuFeO3, h-Lu0.833In0.167FeO3, h-Lu0.667In0.333FeO3 and h-Lu0.333In0.667FeO3 along the c-axis are 3.93, 5.91, 7.92, and 11.02 μC·cm–2, respectively. Therefore, with the increase of the number of In atoms replacing Lu atoms, the lattice constant c/a ratio of h-Lu1–xInxFeO3 increases, which can improve the ferroelectric polarization strength of the material. By analyzing the density of states of h-LuFeO3 and h-Lu0.333In0.667FeO3, we can see that In doping enhances the Fe-O orbital hybridization in h-Lu0.333In0.667FeO3, and makes the optical absorption coefficient of h-Lu0.333In0.667FeO3 in the solar light range larger. In summary, In doped h-LuFeO3 is an effective method to improve its polarization intensity and optical absorption coefficient, which is of great significance for improving the performance of ferroelectric photovoltaic.
      Corresponding author: Zhong Xiang-Li, xlzhong@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51872251, 11875229) and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No. ZHD201803)
    [1]

    Ji Y, Gao T, Wang Z L, Yang Y 2019 Nano Energy 64 103909Google Scholar

    [2]

    Teh Y S, Bhattacharya K 2019 J. Appl. Phys. 125 064103Google Scholar

    [3]

    Pal S, Swain A B, Biswas P P, Murali D, Pal A, Nanda B R K, Murugavel P 2018 Sci. Rep. 8 17Google Scholar

    [4]

    Butler K T, Frost J M, Walsh A 2015 Energy Environ. Sci. 8 838848Google Scholar

    [5]

    蔡田怡, 雎胜 2018 物理学报 67 157801Google Scholar

    Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar

    [6]

    王婧, 吴霞, 邓朝勇, 朱孔军, 南策文 2014 无机材料学报 29 905911Google Scholar

    Wang J, Wu X, Deng C Y, Zhu K J, Nan C W 2014 J. Inorg. Mater. 29 905911Google Scholar

    [7]

    Chen Y, Chen J, Yang S, Li Y, Gao X, Zeng M, Fan Z, Gao X, Lu X, Liu J M 2018 Mater. Res. Bull. 107 456Google Scholar

    [8]

    Young S M, Zheng F, Rappe A M 2015 Phys. Rev. Appl. 4 054004Google Scholar

    [9]

    张兴良 2010 硕士学位论文 (武汉: 武汉理工大学)

    Zhang X L 2010 M. S. Thesis (Wuhan: Wuhan University Of Technology) (in Chinese)

    [10]

    Sinha K, Zhang Y, Jiang X, Wang H, Wang X, Zhang X, Ryan P J, Kim J W, Bowlan J, Yarotski D A, Li Y, DiChiara A D, Cheng X, Wu X, Xu X 2017 Phys. Rev. B 95 094110Google Scholar

    [11]

    Han H, Kim D, Chae S, Park J, Nam S Y, Choi M, Yong K, Kim H J, Son J, Jang H M 2018 Nanoscale 10 13261Google Scholar

    [12]

    Han H, Kim D, Chu K, Park J, Nam S Y, Heo S, Yang C, Jang H M 2018 ACS Appl. Mater. Interfaces 10 18461853Google Scholar

    [13]

    Akbashev A R, Semisalova A S, Perov N S, Kaul A R 2011 Appl. Phys. Lett. 99 122502Google Scholar

    [14]

    Wang W, Zhao J, Wang W, et al. 2013 Rev. Lett. 110 237601Google Scholar

    [15]

    Huang X, Paudel T R, Dong S, Tsymbal E Y 2015 Phys. Rev. B 92 125201Google Scholar

    [16]

    Lin L, Zhang H M, Liu M F, Shen S, Zhou S, Li D, Wang X, Yan Z B, Zhang Z D, Zhao J, Dong S, Liu J M 2016 Phys. Rev. B 93 075146Google Scholar

    [17]

    Liu J, Sun T L, Liu X Q, Tian H, Gao T T, Chen X M 2018 Adv. Funct. Mater. 28 1706062Google Scholar

    [18]

    Fu Z, Nair H S, Xiao Y, Senyshyn A, Pomjakushin V, Feng E, Pomjakushin V, Su Y, Jin W T, Bruckel T 2016 Phys. Rev. B 94 125150Google Scholar

    [19]

    Clark S J, Segall M D, Pickard C J, Hasnip P, Probert M I, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [20]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke X 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [21]

    Holinsworth B S, Mazumdar D, Brooks C M, Mundy J A, Das H, Cherian J G, McGill S A, Fennie C J, Schlom D G, Musfeldt J L 2015 Appl. Phys. Lett. 106 082902Google Scholar

    [22]

    Ridzwan M H, Yaakob M K, Taib M F M, Ali A M M, Hassan O H, Yahya M Z A 2017 Mater. Res. Express 4 044001Google Scholar

    [23]

    Disseler S M, Borchers J A, Brooks C M, Mundy J A, Moyer J A, Hillsberry D A, Thies E L, Tenne D A, Heron J, Holtz M, Clarkson J D, Stiehl G M, Schiffer P, Muller D A, Schlom D G, Ratcliff W D 2015 Phys. Rev. Lett. 114 217602Google Scholar

    [24]

    Wang W, Wang H, Xu X, Zhu L, He L, Wills E, Cheng X, Keavney D J, Shen J, Wu X, Xu X 2012 Appl. Phys. Lett. 101 241907Google Scholar

    [25]

    Das H, Wysocki A L, Geng Y, Wu W, Fennie C J 2014 Nat. Commun. 5 3998Google Scholar

    [26]

    Tu S, Zhang Y, Reshak A H, Auluck S, Ye L, Han X, Ma T, Huang H 2019 Nano Energy 56 840Google Scholar

    [27]

    Roy A, Mukherjee S, Gupta R, Auluck S, Prasad R, Garg A 2011 J. Phys. Condens. Matter 23 325902Google Scholar

  • 图 1  h-Lu1–xInxFeO3的球棍结构模型图 (a) P1, P2位置; (b) h-Lu0.667In0.333FeO3; (c) h-Lu0.333In0.667FeO3

    Figure 1.  Model of the ball-and-stick structure of h-Lu1–xInxFeO3: (a) P1, P2 position; (b) h-Lu0.667In0.333FeO3; (c) h-Lu0.333In0.667FeO3

    图 2  h-Lu1–xFexO3的能带图 (a) h-Lu0.833In0.167FeO3; (b) h-Lu0.667In0.333FeO3; (c) h-Lu0.333In0.667FeO3

    Figure 2.  Energy band diagrams of h-Lu1–xFexO3: (a) h-Lu0.833In0.167FeO3; (b) h-Lu0.667In0.333FeO3; (c) h-Lu0.333In0.667FeO3

    图 3  分布态密度图 (a) 未掺杂的h-LuFeO3; (b) h-Lu0.333In0.667FeO3

    Figure 3.  Distribution density of states: (a) Undoped h-LuFeO3; (b) h-Lu0.333In0.667FeO3.

    图 4  In掺杂前后h-LuFeO3光学吸收系数随入射光子能量的变化

    Figure 4.  Change of optical absorption coefficient of h-LuFeO3 with incident photon energy before and after In doping.

    图 5  不同In/Lu比的h-Lu1–xInxFeO3极化值(红色曲线)和晶格常数c/a比(蓝色曲线)

    Figure 5.  Polarization values (red curve) and lattice constant c/a ratios (blue curve) of h-Lu1–xInxFeO3 with different In/Lu ratios.

    表 1  不同磁序下不同位置的In掺杂相对能量变化

    Table 1.  Relative energy changes of In doping at different positions under different magnetic orders.

    掺杂位置G型/eVC型/eVA型/eV铁磁型/eV
    未掺00.011.370.01
    P1 位置010.383.1412.51
    P2 位置00.030.251.41
    DownLoad: CSV

    表 2  In∶Lu为1∶2和2∶1时h-Lu1–xInxO3不同磁序的相对能量

    Table 2.  Relative energy of h-Lu1–xInxO3 with different magnetic sequencewhen In∶Lu is 1∶2 and 2∶1.

    材料G型/eVC型/eVA型/eV铁磁型/eV
    h-Lu2/3In1/3FeO300.01260.86040.8604
    h-Lu1/3In2/3FeO300.00960.89520.9487
    DownLoad: CSV

    表 3  h-Lu1–xInxO3的结构优化结果

    Table 3.  Structure optimization results of h-Lu1–xInxO3.

    材料晶格常数/Å体积/Å3轴角/(°)
    abcαβγ
    (h-LuFeO3)[15]5.9655.96511.702
    (h-LuFeO3)[23]5.9855.98511.770
    h-LuFeO36.0676.06711.756374.92690.00090.000119.993
    h-Lu0.833In0.167FeO36.0426.04211.880374.77090.04790.004120.214
    h-Lu0.667In0.333FeO36.0056.00711.935372.22190.01490.033120.166
    h-Lu0.333In0.667FeO35.9225.92312.119367.51689.99990.001120.173
    DownLoad: CSV

    表 4  本工作带隙计算结果与已发表结果对比

    Table 4.  Comparison of calculated band gap results with published results.

    CASTEP[22]WIEN2K[24]VASP[25]本工作
    交换关
    联泛函
    LDAGGA-
    PBE
    GGA-
    PBEsol
    GGA-
    PBE
    U34.54.614.5
    带隙/eV0.541.11.351.16
    DownLoad: CSV
  • [1]

    Ji Y, Gao T, Wang Z L, Yang Y 2019 Nano Energy 64 103909Google Scholar

    [2]

    Teh Y S, Bhattacharya K 2019 J. Appl. Phys. 125 064103Google Scholar

    [3]

    Pal S, Swain A B, Biswas P P, Murali D, Pal A, Nanda B R K, Murugavel P 2018 Sci. Rep. 8 17Google Scholar

    [4]

    Butler K T, Frost J M, Walsh A 2015 Energy Environ. Sci. 8 838848Google Scholar

    [5]

    蔡田怡, 雎胜 2018 物理学报 67 157801Google Scholar

    Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar

    [6]

    王婧, 吴霞, 邓朝勇, 朱孔军, 南策文 2014 无机材料学报 29 905911Google Scholar

    Wang J, Wu X, Deng C Y, Zhu K J, Nan C W 2014 J. Inorg. Mater. 29 905911Google Scholar

    [7]

    Chen Y, Chen J, Yang S, Li Y, Gao X, Zeng M, Fan Z, Gao X, Lu X, Liu J M 2018 Mater. Res. Bull. 107 456Google Scholar

    [8]

    Young S M, Zheng F, Rappe A M 2015 Phys. Rev. Appl. 4 054004Google Scholar

    [9]

    张兴良 2010 硕士学位论文 (武汉: 武汉理工大学)

    Zhang X L 2010 M. S. Thesis (Wuhan: Wuhan University Of Technology) (in Chinese)

    [10]

    Sinha K, Zhang Y, Jiang X, Wang H, Wang X, Zhang X, Ryan P J, Kim J W, Bowlan J, Yarotski D A, Li Y, DiChiara A D, Cheng X, Wu X, Xu X 2017 Phys. Rev. B 95 094110Google Scholar

    [11]

    Han H, Kim D, Chae S, Park J, Nam S Y, Choi M, Yong K, Kim H J, Son J, Jang H M 2018 Nanoscale 10 13261Google Scholar

    [12]

    Han H, Kim D, Chu K, Park J, Nam S Y, Heo S, Yang C, Jang H M 2018 ACS Appl. Mater. Interfaces 10 18461853Google Scholar

    [13]

    Akbashev A R, Semisalova A S, Perov N S, Kaul A R 2011 Appl. Phys. Lett. 99 122502Google Scholar

    [14]

    Wang W, Zhao J, Wang W, et al. 2013 Rev. Lett. 110 237601Google Scholar

    [15]

    Huang X, Paudel T R, Dong S, Tsymbal E Y 2015 Phys. Rev. B 92 125201Google Scholar

    [16]

    Lin L, Zhang H M, Liu M F, Shen S, Zhou S, Li D, Wang X, Yan Z B, Zhang Z D, Zhao J, Dong S, Liu J M 2016 Phys. Rev. B 93 075146Google Scholar

    [17]

    Liu J, Sun T L, Liu X Q, Tian H, Gao T T, Chen X M 2018 Adv. Funct. Mater. 28 1706062Google Scholar

    [18]

    Fu Z, Nair H S, Xiao Y, Senyshyn A, Pomjakushin V, Feng E, Pomjakushin V, Su Y, Jin W T, Bruckel T 2016 Phys. Rev. B 94 125150Google Scholar

    [19]

    Clark S J, Segall M D, Pickard C J, Hasnip P, Probert M I, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [20]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke X 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [21]

    Holinsworth B S, Mazumdar D, Brooks C M, Mundy J A, Das H, Cherian J G, McGill S A, Fennie C J, Schlom D G, Musfeldt J L 2015 Appl. Phys. Lett. 106 082902Google Scholar

    [22]

    Ridzwan M H, Yaakob M K, Taib M F M, Ali A M M, Hassan O H, Yahya M Z A 2017 Mater. Res. Express 4 044001Google Scholar

    [23]

    Disseler S M, Borchers J A, Brooks C M, Mundy J A, Moyer J A, Hillsberry D A, Thies E L, Tenne D A, Heron J, Holtz M, Clarkson J D, Stiehl G M, Schiffer P, Muller D A, Schlom D G, Ratcliff W D 2015 Phys. Rev. Lett. 114 217602Google Scholar

    [24]

    Wang W, Wang H, Xu X, Zhu L, He L, Wills E, Cheng X, Keavney D J, Shen J, Wu X, Xu X 2012 Appl. Phys. Lett. 101 241907Google Scholar

    [25]

    Das H, Wysocki A L, Geng Y, Wu W, Fennie C J 2014 Nat. Commun. 5 3998Google Scholar

    [26]

    Tu S, Zhang Y, Reshak A H, Auluck S, Ye L, Han X, Ma T, Huang H 2019 Nano Energy 56 840Google Scholar

    [27]

    Roy A, Mukherjee S, Gupta R, Auluck S, Prasad R, Garg A 2011 J. Phys. Condens. Matter 23 325902Google Scholar

  • [1] Wang Na, Xu Hui-Fang, Yang Qiu-Yun, Zhang Mao-Lian, Lin Zi-Jing. First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer. Acta Physica Sinica, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [2] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [3] Pan Feng-Chun, Lin Xue-Ling, Chen Huan-Ming. Electronic structure and optical properties of C doped rutile TiO2: the first-principles calculations. Acta Physica Sinica, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [4] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [5] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [6] He Jing-Fang, Zheng Shu-Kai, Zhou Peng-Li, Shi Ru-Qian, Yan Xiao-Bing. First-principles calculations on the electronic and optical properties of ZnO codoped with Cu-Co. Acta Physica Sinica, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [7] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [8] Yang Chun-Yan, Zhang Rong, Zhang Li-Min, Ke Xiang-Wei. Electronic structure and optical properties of 0.5NdAlO3-0.5CaTiO3 from first-principles calculation. Acta Physica Sinica, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [9] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [10] Wang Ying-Long, Wang Xiu-Li, Liang Wei-Hua, Guo Jian-Xin, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Fu Guang-Sheng. First principles study of electronic and optical properties of Er-doped silicon nanoparticles with different densities. Acta Physica Sinica, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [11] Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long. First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Physica Sinica, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [12] Le Ling-Cong, Ma Xin-Guo, Tang Hao, Wang Yang, Li Xiang, Jiang Jian-Jun. Electronic structure and optical properties of transition metal doped titanate nanotubes. Acta Physica Sinica, 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [13] Lin Zhu, Guo Zhi-You, Bi Yan-Jun, Dong Yu-Cheng. Ferromagnetism and the optical properties of Cu-doped AlN from first-principles study. Acta Physica Sinica, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [14] Hu Zhi-Gang, Duan Man-Yi, Xu Ming, Zhou Xun, Chen Qing-Yun, Dong Cheng-Jun, Linghu Rong-Feng. Electronic structure and optical properties of ZnO doped with Fe and Ni. Acta Physica Sinica, 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [15] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [16] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [17] Guo Jian-Yun, Zheng Guang, He Kai-Hua, Chen Jing-Zhong. First-principles study on electronic structure and optical properties of Al and Mg doped GaN. Acta Physica Sinica, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [18] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [19] Zhao Zong-Yan, Liu Qing-Ju, Zhang Jin, Zhu Zhong-Qi. First-principles study of 3d transition metal-doped anatase. Acta Physica Sinica, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [20] Shen Yi-Bin, Zhou Xun, Xu Ming, Ding Ying-Chun, Duan Man-Yi, Linghu Rong-Feng, Zhu Wen-Jun. Electronic structure and optical properties of ZnO doped with transition metals. Acta Physica Sinica, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
Metrics
  • Abstract views:  6828
  • PDF Downloads:  131
  • Cited By: 0
Publishing process
  • Received Date:  07 August 2020
  • Accepted Date:  07 September 2020
  • Available Online:  24 January 2021
  • Published Online:  05 February 2021

/

返回文章
返回