-
During the study of resistive switching devices, researchers have found that the influence of the insertion layer cannot be ignored. Many reports have confirmed that the appropriate insertion layer can significantly improve the performance of the resistive switching devices. Therefore, in this work, we use magnetron sputtering to fabricate three devices: Cu/MgO/Cu, Cu/MgO/MoS2/Cu and Cu/MoS2/MgO/Cu. Through the characterization test of each device and the measurement of the I-V curve, it is found that the resistive switching characteristics of the Cu/MgO/Cu device will change greatly after adding an MoS2 insertion layer. The analysis results show that the inserted MoS2 layer does not change the main transmission mechanism (space charge limited conduction) of the device, but affects the regulating function of interfacial potential barrier, the effect also is relatedto the location of MoS2 inserted into the layer. Among the Cu/MgO/Cu, Cu/MgO/MoS2/Cu and Cu/MoS2/MgO/Cu devices, the Cu/MgO/MoS2/Cu device exhibits a larger switching ratio (about 103) and a lower reset voltage (about 0.21 V), which can be attributed to the regulation of the interface barrier between MgO and MoS2. In addition, when the MoS2 layer is inserted between the bottom electrodes Cu and MgO, the leakage current of the device is significantly reduced. Therefore, Cu/MoS2/MgO/Cu device has the highest commercial value from the point of view of practical applications. Finally, according to the XPS results and XRD results, we establish the conductive filament models for the three devices, and analyze the reasons for the different resistive switching characteristics of the three devices.
-
图 3 半对数坐标下三种器件的I-V循环轨迹图 (a) Cu/MgO/Cu的多循环曲线; (b) Cu/MgO/Cu的单循环曲线; (c) Cu/MoS2/MgO/Cu的多循环曲线; (d) Cu/MoS2/MgO/Cu的单循环曲线; (e) Cu/MgO/MoS2/Cu的多循环曲线; (f) Cu/MgO/MoS2/Cu的单循环曲线
Figure 3. I-V cycle trajectories of the three devices in semilog coordinates: (a) Multiple cycle curves of Cu/MgO/Cu; (b) single cycle curve of Cu/MgO/Cu; (c) multiple cycle curves of Cu/MoS2/MgO/Cu; (d) single cycle curve of Cu/MoS2/MgO/Cu; (e) multiple cycle curves of Cu/MgO/MoS2/Cu; (f) single cycle curve of Cu/MgO/MoS2/Cu.
图 7 双对数坐标下三种器件的I-V曲线拟合图 (a) 正电压下Cu/MgO/Cu的拟合曲线; (b) 负电压下Cu/MgO/Cu的拟合曲线; (c) 正电压下Cu/MoS2/MgO/Cu的拟合曲线; (d) 负电压下Cu/MoS2/MgO/Cu的拟合曲线; (e) 正电压下Cu/MgO/MoS2/Cu的拟合曲线; (f) 负电压下Cu/MgO/MoS2/Cu的拟合曲线
Figure 7. I-V curves fitting diagram of the three devices in double logarithm coordinates: (a) Fitted curve of Cu/MgO/Cu at positive voltage; (b) fitted curve of Cu/MgO/Cu at negative voltage; (c) fitted curve of Cu/MoS2/MgO/Cu at positive voltage; (d) fitted curve of Cu/MoS2/MgO/Cu at negative voltage; (e) fitted curve of Cu/MgO/MoS2/Cu at positive voltage; (f) fitted curve of Cu/MgO/MoS2/Cu at negative voltage.
图 8 三种器件的机理解释示意图 (a) Cu/MgO/Cu的reset过程; (b) Cu/MgO/Cu的set过程; (c) Cu/MoS2/MgO/Cu的reset过程; (d) Cu/MoS2/MgO/Cu的set过程; (e) Cu/MgO/MoS2/Cu的reset过程; (f) Cu/MgO/MoS2/Cu的set过程
Figure 8. Schematic diagram of the mechanism explanation of the three devices: (a) Reset process of Cu/MgO/Cu; (b) set process of Cu/MgO/Cu; (c) reset process of Cu/MoS2/MgO/Cu; (d) set process of Cu/MoS2/MgO/Cu; (e) reset process of Cu/MgO/MoS2/Cu; (f) set process of Cu/MgO/MoS2/Cu.
-
[1] Sun B, Xiao M, Zhou G, Ren Z, Zhou Y N, Wu Y A 2020 Mater. Today Adv. 6 100056Google Scholar
[2] Zahoor F, Azni Zulkifli T Z, Khanday F A 2020 Nanoscale Res. Lett. 15 90Google Scholar
[3] Wang Z, Song Y, Zhang G, Luo Q, Xu K, Gao D, Yu B, Loke D, Zhong S, Zhang Y 2024 Int. J. Extreme Manuf. 6 032006Google Scholar
[4] Udaya Mohanan K 2024 Nanomaterials 14 527Google Scholar
[5] Sehgal A, Dhull S, Roy S, Kaushik B K 2024 J. Mater. Chem. C 12 5274Google Scholar
[6] Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mater. Sci. Eng. , R 83 1Google Scholar
[7] Pan J, He H, Li T, Gao Y, Yang S, Lin X 2023 Phys. Status Solidi A 220 2300416Google Scholar
[8] Lee J S, Lee S, Noh T W 2015 Appl. Phys. Rev. 2 031303Google Scholar
[9] Kumar B, Kaushik B K, Negi Y S 2013 J. Mater. Sci. - Mater. Electron. 25 1
[10] Duan X, Cao Z, Gao K, Yan W, Sun S, Zhou G, Wu Z, Ren F, Sun B 2024 Adv. Mater. 36 2310704Google Scholar
[11] Dias C, Guerra L M, Bordalo B D, Lü H, Ferraria A M, Botelho do Rego A M, Cardoso S, Freitas P P, Ventura J 2017 Phys. Chem. Chem. Phys. 19 10898Google Scholar
[12] Guo Z, Liu G, Sun Y, Zhang Y, Zhao J, Liu P, Wang H, Zhou Z, Zhao Z, Jia X, Sun J, Shao Y, Han X, Zhang Z, Yan X 2023 ACS Nano 17 21518Google Scholar
[13] He C, Lu Y, Tang Y, Li X, Chen P 2021 Appl. Phys. A 127 484Google Scholar
[14] Hsu C C, Shrivastava S, Pratik S, Chandrasekaran S, Tseng T Y 2023 IEEE Trans. Electron Devices 70 1048Google Scholar
[15] Saini S, Lodhi A, Dwivedi A, Khandelwal A, Tiwari S P 2023 IEEE Trans. Electron Devices 70 53Google Scholar
[16] Das O P, Pandey S K 2022 Phys. Status Solidi B 259 2200103Google Scholar
[17] Kumar D, Kalaga P S, Ang D S 2020 IEEE Trans. Electron Devices 67 4274Google Scholar
[18] Lee J, Lee S, Kwak M, Choi W, Mosendz O, Hwang H 2022 IEEE Electron Device Lett. 43 220Google Scholar
[19] Lee S R, Kang B S 2024 Curr. Appl Phys. 61 75Google Scholar
[20] Huang H H, Shih W C, Lai C H 2010 Appl. Phys. Lett. 96 193505Google Scholar
[21] Guerra L M, Dias C, Pereira J, Lv H, Cardoso S, Freitas P P, Ventura J 2017 J. Nanosci. Nanotechnol. 17 564Google Scholar
[22] Aziz I, Ciou J H, Kongcharoen H, Lee P S 2022 J. Appl. Phys. 132 014502Google Scholar
[23] Chow S C W, Dananjaya P A, Ang J M, Loy D J J, Thong J R, Hoo S W, Toh E H, Lew W S 2023 Appl. Surf. Sci. 608 155233Google Scholar
[24] Hu G, Yu Z, Qu H, Yuan Y, Li D, Zhu M, Guo J, Xia C, Wang X, Wang B, Ma G, Wang H, Dong W 2024 Appl. Phys. Lett. 124 142109Google Scholar
[25] Xiong X, Wu F, Ouyang Y, Liu Y, Wang Z, Tian H, Dong M 2023 Adv. Funct. Mater. 34 2213348
[26] Ling Y, Li J, Luo T, Lin Y, Zhang G, Shou M, Liao Q 2023 Nanomaterials 13 3117Google Scholar
[27] Jiao Z, Lan X, Zhou X, Wang K, Zong H, Zhang P, Xu B 2023 J. Mater. Chem. C 11 17050Google Scholar
[28] Li S, He C, Shu H, Chen P 2024 Mod. Phys. Lett. B 38 2450331
[29] Guo J, Ren S, Wu L, Kang X, Chen W, Zhao X 2018 Appl. Surf. Sci. 434 1074Google Scholar
[30] Chen T, Yang S, Wang J, Chen W, Liu L, Wang Y, Cheng S, Zhao X 2021 Adv. Electron. Mater. 7 2000882Google Scholar
[31] Qi L, Shen J, Xu Q, Lu P, Feng P, Sun H 2022 Chem. Phys. Lett. 799 139560Google Scholar
[32] Menghini M, Quinteros C, Su C Y, Homm P, Levy P, Kittl J, Locquet J P 2014 Phys. Status Solidi C 12 246
[33] Yang Y, Gao P, Gaba S, Chang T, Pan X, Lu W 2012 Nat. Commun. 3 732Google Scholar
[34] Chiu F C 2014 Adv. Mater. Sci. Eng. 2014 1
[35] Chiu F C, Shih W C, Feng J J 2012 J. Appl. Phys. 111 094104Google Scholar
[36] Loy D J J, Dananjaya P A, Hong X L, Shum D P, Lew W S 2018 Sci. Rep. 8 14774Google Scholar
[37] Fang S L, Liu W H, Li X, Wang X L, Geng L, Wu M S, Huang X D, Han C Y 2019 Appl. Phys. Lett. 115 244102Google Scholar
[38] Wang S, Dang B, Sun J, Zhao M, Yang M, Ma X, Wang H, Hao Y 2021 IEEE Electron Device Lett. 42 700Google Scholar
[39] Wang S, Dang B, Sun J, Song F, Zhao M, Yang M, Ma X, Wang H, Hao Y 2020 IEEE Electron Device Lett. 41 553Google Scholar
[40] Li S, He C, Shu H, Chen P 2024 Appl. Phys. A 130 534Google Scholar
[41] Lü J, Wang S, Li F, Liang Q, Yang M, Ma X, Wang H, Hao Y 2021 IEEE Electron Device Lett. 42 1599Google Scholar
Metrics
- Abstract views: 86
- PDF Downloads: 1
- Cited By: 0