-
Metasurfaces have the characteristics of simple structure, easy fabrication, easy integration etc., and can flexibly control electromagnetic waves. It is widely used in terahertz filters, lenses, polarization converters, wavefront adjustment, terahertz imaging and so on. By encoding and arranging unit cells with different amplitudes and phases according to a certain rule, the metasurfaces can achieve various functions such as imaging, focusing, beam splitting, vortex beam, etc. The reported coding metasurfaces are phase-modulated according to geometric phase or transmission phase theory. However, geometric phase has spin-locking property and transmission phase has single-frequency property, which hinders the application of a unified metasurface to simultaneously regulate geometric and transmission phases.
To address the above issues, in this letter, we proposed an arc and rotation co-induced phase modulation metasurface, whose unit cell independently modulate the cross-polarized reflection phases of LCP and RCP waves and has a certain bandwidth, which meets the demands in frequency region of 1-1.2 THz. Through the principle of phase convolution and shared aperture, the metasurface realize vortex beams with a topological charge of ±1, focusing with a focal length of 1500 μm, deflected vortex beams with a topological charge of ±2, and quasi-perfect vortex beams, and multichannel vortex beams. The structure has the advantages of simple structure, flexible and convenient regulation, and compact size, which improves the utilization of the electromagnetic space and has a broad application prospect in the future terahertz communication system. -
[1] Feng H, Otani C 2021 Crit. Rev. Food Sci. Nutr. 61 2523
[2] Song Z, Chen A, Zhang J 2020 Opt. Express 28 2037
[3] Zhang Y, Wu P, Zhou Z, Chen X, Yi Z, Zhu J, Zhang T, Ji H 2020 IEEE Access 8 85154
[4] Hu X, Zheng D, Lin Y 2020 Appl. Phys. A: Mater. Sci. Process. 126 110
[5] Liu X, Huang J, Chen H 2022 Photonics Res. 10 1090
[6] Zhang Z, Wen D, Zhang C 2018 ACS Photonics 5 1794
[7] Liu Y, Che Y, Qi K, Li L, Yin H 2020 Opt. Commun. 474 26061
[8] Huang J, Fu T, Li H, Shou Z, Gao X 2020 Chin. Opt. Lett. 18 013102
[9] Wang H, Zhang Z, Zhao K, Liu W, Wang P, Lu Y 2021 Chin. Opt. Lett. 19 053601
[10] Ma Z, Hanham S, Gong Y, Hong M 2018 Opt. Lett. 43 911
[11] Yang L, Li J, Yan D 2022 Opt. Commun. 516 128234
[12] Jiang Q, Jin G, Cao L 2019 Adv. Opt. Photonics 11 518
[13] Bao Y, Yan J, Yang X, Qiu C, Li B 2020 Nano Lett. 21 2332
[14] Gao P, Chen C, Dai Y, Wang X, Liu H 2023 Opt. Mater. 145 114448
[15] Ma Z, Li P, Chen S, Wu X 2022 Nanophotonics 11 1847
[16] Zang X, Yao B, Chen L, Xie J, Guo X 2021 Adv. Manuf. 2 148
[17] Li S, Li Z, Han B, Huang G, Liu X, Yang H, Cao X 2022 Front. Magn. Mater. 9 854062
[18] Liu J, Cheng Y, Chen F, Luo H, Li X 2023 Infrared Laser Eng. 52 111
[19] Fu C, Zhao J, Li F, Li H 2023 Micromachines 14 465
[20] Sun S, Ma F, Gou Y, Zhang Y, Wu W, Cui J 2023 Opt. Mater. 11 2202275
[21] Fan J, Cheng Y 2020 J. Phys. D:Appl. Phys. 53 025109
[22] Fu X, Yang J, Wang J, Ding C, Han Y, Jia Y 2023 Laser Photonics Rev. 17 1863
[23] Zhang L, Liu S, Cui T 2017 Chin. Opt. Lett. 10 1
[24] Liu W, Yang Q, Xu Q, Jiang X, Wu T, Gu J, Han J, Zhang W 2022 Nanophotonics 11 3631
[25] Li J, Guo F, Chen Y 2023 Opt. Commun. 537 129428
Metrics
- Abstract views: 107
- PDF Downloads: 2
- Cited By: 0