搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阻挡杂质带红外探测器中的界面势垒效应

廖开升 李志锋 李梁 王超 周孝好 戴宁 李宁

引用本文:
Citation:

阻挡杂质带红外探测器中的界面势垒效应

廖开升, 李志锋, 李梁, 王超, 周孝好, 戴宁, 李宁

Interfacial barrier effects in blocked impurity band infrared detectors

Liao Kai-Sheng, Li Zhi-Feng, Li Liang, Wang Chao, Zhou Xiao-Hao, Dai Ning, Li Ning
PDF
导出引用
  • 通过变温暗电流和变偏压光电流谱实验对阻挡杂质带红外探测器的跃迁机理和输运特性进行了研究. 结合器件能带结构计算的结果, 证明了在阻挡杂质带红外探测器中主要由导带底下移效应引起的界面势垒的存在. 提出了阻挡杂质带红外探测器的双激发工作模型, 并从变偏压光电流谱中成功地分离出了与这两种物理过程所对应的光谱峰, 进一步证实了器件的能带结构. 研究了界面势垒效应对阻挡杂质带红外探测器的光电流谱、响应率和内量子效率的影响. 研究表明, 考虑进界面势垒效应, 计算得到的器件响应率与实验值符合得很好. 同时发现阻挡杂质带红外探测器中内建电场的存在等效降低了发生碰撞电离增益所需的临界电场强度.
    Blocked impurity band (BIB) detectors, developed from extrinsic detectors, have long been employed for ground-based and airborne astronomical imaging and photon detections. They are the state-of-the-art choice for highly sensitive detection from mid-infrared to far-infrared radiation. In this work, we demonstrate the existence of an interfacial barrier in blocked impurity band structures by evidence of temperature-dependent dark currents, bias-dependent photocurrent spectra and corresponding theoretical calculations. The origin of the build-in field is studied. The temperature-dependent characteristics of space charge effects are also investigated in detail. It is found that at higher temperature (T 14 K), the space charge influence is negligible, and the interfacial barrier is mainly caused by bandgap narrowing effects. Based on interfacial barrier effects, a dual-excitation model is proposed to clarify the band structure of BIB detectors. The photocurrent spectra related to the two excitation processes, i.e., the direct excitation over the interfacial barrier and excitation to the band edge with subquent tunneling into blocking layer, are successfully extracted and agree reasonably well with the calculated band structure results. The effects of interfacial barrier on the photocurrent spectrum, peak responsivity and internal quantum efficiency of the devices are investigated. With the consideration of interfacial barrier effects, the calculated peak responsivity shows good agreement with the experimental result. It is suggested that interfacial barrier effects should be considered for successfully designing the BIB detectors. Additionally, the build-in field is found to equivalently lower the critical field for impact ionization. This study provides a better understanding of the working mechanism in BIB detectors and also a better device optimization.
      通信作者: 李宁, ningli@mail.sitp.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB922004)、国家自然科学基金(批准号: 61290304, 61376053)和上海技术物理研究所知识创新项目(批准号: Q-DX-64)资助的课题.
      Corresponding author: Li Ning, ningli@mail.sitp.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB922004), the National Natural Science Foundation of China (Grant Nos. 61290304, 61376053), and the Knowledge Innovation Project of Shanghai Institute of Technical Physics, China (Grant No. Q-DX-64).
    [1]

    Al-Naib I, Hebestreit E, Rockstuhl C, Lederer F, Christodoulides D, Ozaki T, Morandotti R 2014 Phys. Rev. Lett. 112 183903

    [2]

    Rogalski A, Sizov F 2011 Opto-Electron. Rev. 19 346

    [3]

    Hu W D, Yin F, Ye Z H, Quan Z J, Hu X N, Li Z F, Chen X S, Lu W 2009 Acta Phys. Sin. 58 7891 (in Chinese) [胡伟达, 殷菲, 叶振华, 全知觉, 胡晓宁, 李志锋, 陈效双, 陆卫 2009 物理学报 58 7891]

    [4]

    Liao K S, Liu X H, Huang L, Li Z F, Li N, Dai N 2014 Sci. Sin. : Phys. Mesh. Astron. 44 360 (in Chinese) [廖开升, 刘希辉, 黄亮, 李志锋, 李宁, 戴宁 2014 中国科学: 物理学 力学 天文学 44 360]

    [5]

    Zhu H, Zhang B P, Wang M, Hu G J, Dai N, Wu H Z 2014 Acta Phys. Sin 63 136803 (in Chinese) [朱贺, 张兵坡, 王淼, 胡古今, 戴宁, 吴惠桢 2014 物理学报 63 136803]

    [6]

    Reynolds D, Seib D, Stetson S, Herter T, Rowlands N, Schoenwald J 1989 IEEE Trans. Nucl. Sci. 36 857

    [7]

    Hogue H H, Guptill M L, Reynolds D, Atkins E W, Stapelbroek M G 2003 Proc. SPIE 4850 880

    [8]

    Rauter P, Fromherz T, Winnerl S, Zier M, Kolitsch A, Helm M, Bauer G 2008 Appl. Phys. Lett. 93 261104

    [9]

    Huffman J E, Crouse A G, Halleck B L, Downes T V, Herter T L 1992 J. Appl. Phys. 72 273

    [10]

    Watson D M, Huffman J E 1988 Appl. Phys. Lett. 52 1602

    [11]

    Cardozo B L, Haller E E, Reichertz L A, Beeman J W 2003 Appl. Phys. Lett. 83 3990

    [12]

    Szmulowicz F, Madarasz F L 1987 J. Appl. Phys. 62 2533

    [13]

    Leotin J 1999 Infrared Phys. Technol. 40 153

    [14]

    Haegel N M, Jacobs J E, White A M 2000 Appl. Phys. Lett. 77 4389

    [15]

    Rylkov V V, Leotin J, Asadauskas L, Aronzon B A, Kovalev D Y 2002 J. Appl. Phys. 91 4511

    [16]

    Mahan G D 1980 J. Appl. Phys. 51 2634

    [17]

    Berggren K F, Sernelius B E 1981 Phys. Rev. B 24 1971

    [18]

    Liao K S, Li N, Wang C, Li L, Jing Y L, Wen J, Li M Y, Wang H, Zhou X H, Li Z F, Lu W 2014 Appl. Phys. Lett. 105 143501

    [19]

    Liao K, Li N, Liu X, Huang L, Zeng Q, Zhou X, Li Z 2013 2013-Fifth International Symposium on Photoelectronic Detection and Imaging Beijing, China, June 25-27, 2013 p890913

    [20]

    Shklovskii B I, Efros A L 1984 Electronic Properties of Doped Semiconductors (Berlin Heidelberg, New York, Tokyo: Springer-Verlag) pp52-82

    [21]

    Liu X H, Zhou X H, Li N, Wang L, Sun Q L, Liao K S, Huang L, Li Q, Li Z F, Chen P P, Lu W 2014 J. Appl. Phys. 115 124503

  • [1]

    Al-Naib I, Hebestreit E, Rockstuhl C, Lederer F, Christodoulides D, Ozaki T, Morandotti R 2014 Phys. Rev. Lett. 112 183903

    [2]

    Rogalski A, Sizov F 2011 Opto-Electron. Rev. 19 346

    [3]

    Hu W D, Yin F, Ye Z H, Quan Z J, Hu X N, Li Z F, Chen X S, Lu W 2009 Acta Phys. Sin. 58 7891 (in Chinese) [胡伟达, 殷菲, 叶振华, 全知觉, 胡晓宁, 李志锋, 陈效双, 陆卫 2009 物理学报 58 7891]

    [4]

    Liao K S, Liu X H, Huang L, Li Z F, Li N, Dai N 2014 Sci. Sin. : Phys. Mesh. Astron. 44 360 (in Chinese) [廖开升, 刘希辉, 黄亮, 李志锋, 李宁, 戴宁 2014 中国科学: 物理学 力学 天文学 44 360]

    [5]

    Zhu H, Zhang B P, Wang M, Hu G J, Dai N, Wu H Z 2014 Acta Phys. Sin 63 136803 (in Chinese) [朱贺, 张兵坡, 王淼, 胡古今, 戴宁, 吴惠桢 2014 物理学报 63 136803]

    [6]

    Reynolds D, Seib D, Stetson S, Herter T, Rowlands N, Schoenwald J 1989 IEEE Trans. Nucl. Sci. 36 857

    [7]

    Hogue H H, Guptill M L, Reynolds D, Atkins E W, Stapelbroek M G 2003 Proc. SPIE 4850 880

    [8]

    Rauter P, Fromherz T, Winnerl S, Zier M, Kolitsch A, Helm M, Bauer G 2008 Appl. Phys. Lett. 93 261104

    [9]

    Huffman J E, Crouse A G, Halleck B L, Downes T V, Herter T L 1992 J. Appl. Phys. 72 273

    [10]

    Watson D M, Huffman J E 1988 Appl. Phys. Lett. 52 1602

    [11]

    Cardozo B L, Haller E E, Reichertz L A, Beeman J W 2003 Appl. Phys. Lett. 83 3990

    [12]

    Szmulowicz F, Madarasz F L 1987 J. Appl. Phys. 62 2533

    [13]

    Leotin J 1999 Infrared Phys. Technol. 40 153

    [14]

    Haegel N M, Jacobs J E, White A M 2000 Appl. Phys. Lett. 77 4389

    [15]

    Rylkov V V, Leotin J, Asadauskas L, Aronzon B A, Kovalev D Y 2002 J. Appl. Phys. 91 4511

    [16]

    Mahan G D 1980 J. Appl. Phys. 51 2634

    [17]

    Berggren K F, Sernelius B E 1981 Phys. Rev. B 24 1971

    [18]

    Liao K S, Li N, Wang C, Li L, Jing Y L, Wen J, Li M Y, Wang H, Zhou X H, Li Z F, Lu W 2014 Appl. Phys. Lett. 105 143501

    [19]

    Liao K, Li N, Liu X, Huang L, Zeng Q, Zhou X, Li Z 2013 2013-Fifth International Symposium on Photoelectronic Detection and Imaging Beijing, China, June 25-27, 2013 p890913

    [20]

    Shklovskii B I, Efros A L 1984 Electronic Properties of Doped Semiconductors (Berlin Heidelberg, New York, Tokyo: Springer-Verlag) pp52-82

    [21]

    Liu X H, Zhou X H, Li N, Wang L, Sun Q L, Liao K S, Huang L, Li Q, Li Z F, Chen P P, Lu W 2014 J. Appl. Phys. 115 124503

  • [1] 霍冠忠, 苏超, 王可, 叶晴莹, 庄彬, 陈水源, 黄志高. 铁酸铋薄膜光电流的磁场调制研究. 物理学报, 2023, 72(6): 067501. doi: 10.7498/aps.72.20222053
    [2] 谢盈, 朱志刚, 张晓锋, 任国栋. 光电流驱动下非线性神经元电路的放电模式控制. 物理学报, 2021, 70(21): 210502. doi: 10.7498/aps.70.20210676
    [3] 韩迪仪, 顾阳, 胡涛政, 董雯, 倪亚贤. 双金属/TiO2纳米管复合结构中增强的光电流. 物理学报, 2021, 70(3): 038103. doi: 10.7498/aps.70.20201134
    [4] 陆子晴, 韩勤, 叶焓, 王帅, 肖峰, 肖帆. 适用400 Gbit/s接收系统的铟磷基低暗电流高带宽倏逝波耦合光电探测器阵列. 物理学报, 2021, 70(20): 208501. doi: 10.7498/aps.70.20210781
    [5] 龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文. 尺寸调控SnO2量子点的阻变性能及调控机理. 物理学报, 2021, 70(19): 197301. doi: 10.7498/aps.70.20210608
    [6] 霍大云, 石震武, 张伟, 唐沈立, 彭长四. InGaAs/AlGaAs量子阱红外探测器中势垒生长温度的研究. 物理学报, 2017, 66(6): 068501. doi: 10.7498/aps.66.068501
    [7] 赵宏宇, 王頔, 魏智, 金光勇. 毫秒脉冲激光致硅光电二极管电学损伤的有限元分析及实验研究. 物理学报, 2017, 66(10): 104203. doi: 10.7498/aps.66.104203
    [8] 刘珂, 马文全, 黄建亮, 张艳华, 曹玉莲, 黄文军, 赵成城. 含有AlGaAs插入层的InAs/GaAs三色量子点红外探测器. 物理学报, 2016, 65(10): 108502. doi: 10.7498/aps.65.108502
    [9] 刘昶时, 刘文莉. 由阴、阳极电压及入射光强及频率确定光电流. 物理学报, 2013, 62(2): 028401. doi: 10.7498/aps.62.028401
    [10] 刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙. 量子点红外探测器的噪声表征. 物理学报, 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [11] 李博, 邵剑峰. 瞬态光电流对有机薄膜光伏器件中肖特基接触的研究. 物理学报, 2012, 61(7): 077301. doi: 10.7498/aps.61.077301
    [12] 许双英, 胡林华, 李文欣, 戴松元. 染料敏化太阳电池中TiO2颗粒界面接触对电子输运影响的研究. 物理学报, 2011, 60(11): 116802. doi: 10.7498/aps.60.116802
    [13] 廖栽宜, 赵玲娟, 张云霄, 边静, 潘教青, 王圩. 一种利用光电流和光透过曲线测量电吸收调制器插入损耗因素的方法. 物理学报, 2009, 58(5): 3135-3139. doi: 10.7498/aps.58.3135
    [14] 周 梅, 赵德刚. p-GaN层厚度对GaN基p-i-n结构紫外探测器性能的影响. 物理学报, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [15] 周 梅, 常清英, 赵德刚. 一种减小GaN基肖特基结构紫外探测器暗电流的方法. 物理学报, 2008, 57(4): 2548-2553. doi: 10.7498/aps.57.2548
    [16] 熊大元, 李 宁, 徐文兰, 甄红楼, 李志锋, 陆 卫. 甚长波量子阱红外探测器的暗电流特性研究. 物理学报, 2007, 56(9): 5424-5428. doi: 10.7498/aps.56.5424
    [17] 刘鲁宁, 寿 倩, 雷 亮, 林春梅, 赖天树, 文锦辉, 林位株. 半导体中相干控制光电流对光场的偏振依赖性. 物理学报, 2005, 54(4): 1863-1867. doi: 10.7498/aps.54.1863
    [18] 袁先漳, 陆 卫, 李 宁, 陈效双, 沈学础, 资 剑. 超长波GaAs/AlGaAs量子阱红外探测器光电流谱特性研究. 物理学报, 2003, 52(2): 503-507. doi: 10.7498/aps.52.503
    [19] 杨盛谊, 王振家, 陈晓红, 侯延冰, 董金凤, 徐叙. 高场下界面势垒对双层有机器件复合发光的影响. 物理学报, 2000, 49(8): 1627-1631. doi: 10.7498/aps.49.1627
    [20] 张连芳, 赵文正, 尚仁成, 潘力, 王世亮, 文克玲, 陈瓞延. 用脉冲电场光电流光谱研究Ne原子的自电离态. 物理学报, 1990, 39(12): 1870-1876. doi: 10.7498/aps.39.1870
计量
  • 文章访问数:  5114
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-08
  • 修回日期:  2015-08-03
  • 刊出日期:  2015-11-05

/

返回文章
返回