搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毫秒脉冲激光致硅光电二极管电学损伤的有限元分析及实验研究

赵宏宇 王頔 魏智 金光勇

引用本文:
Citation:

毫秒脉冲激光致硅光电二极管电学损伤的有限元分析及实验研究

赵宏宇, 王頔, 魏智, 金光勇

Finite element analysis and experimental study on electrical damage of silicon photodiode induced by millisecond pulse laser

Zhao Hong-Yu, Wang Di, Wei Zhi, Jin Guang-Yong
PDF
导出引用
  • 为了研究毫秒脉冲激光致硅基PIN光电二极管电学损伤,基于热传导及弹塑性力学理论,在光电二极管内部材料各向同性并且P-I-N三层结构之间满足温度连续和热流平衡条件下,建立毫秒脉冲激光辐照硅基PIN光电二极管二维轴对称模型,采用有限元方法模拟分析了1064 nm Nd:YAG毫秒量级脉冲激光辐照硅基PIN光电二极管的温度场与应力场分布,并实验测量了硅基PIN光电二极管实验前后的电学参数.结果表明,激光辐照硅基PIN光电二极管时,温升使材料表面熔融、烧蚀,并且在空间上存在温度梯度变化,即激光辐照产生的热与应力使光敏面及硅晶格晶键损伤,最终造成光电探测器的探测性能下降.研究结果可为毫秒脉冲激光辐照硅基PIN光电二极管电学损伤机理奠定基础.
    In this paper, based on the thermal elasto-plastic constitutive theory and the equivalent specific heat method, the electrical damage in the silicon-based positive-intrinsic-negative (PIN) photodiode irradiated by millisecond (ms)-pulsed laser is investigated. On condition that the internal material of the photodiode is isotropic and threelayer structure of the P-I-N satisfying temperature continuity and heat flow balance, a two-dimensional (2D) simulation axisymmetric model for silicon-based PIN photodiode irradiated by ms-pulsed laser is built. The thermal and stress field distribution are simulated in the silicon-based PIN photodiode irradiated by the Nd:YAG ms-pulsed laser at 1064 nm through using the finite element simulation software. At the same time, electrical parameters before and after the experiment of the silicon-based PIN photodiode irradiated by pulsed laser are measured. The experimental results show that the surface is melted and ablated gradually with the increase of temperature in the high energy pulsed laser, and there is a gradient change for the temperature in spatial distribution. With the increase of laser energy density, photoelectric detector shows the temperature rise phenomenon and damage effect is more obvious. When the tensile stress or compressive stress is greater than 1.7 GPa, the photosensitive surface and the silicon lattice are damaged with the changes of thermal and stress fields. Bond cleavage can change the photogenerated carrier transport channel, and the transport time can be longer. In this process, the photogenerated electron-hole pairs are readily recombined, carrier lifetime decrease and carrier concentration increase, which leads to the increase of the dark current and the decrease of the responsivity. Eventually the performance of photodetector detection is reduced. Through comprehensive comparison between experiment and simulation, one can confirm that this theoretical model has a considerable level of reliability. The conclusion we can draw is that the threshold of electrical damage is 1.7 GPa. So the control of annealing temperature is extremely important for the process of making PIN photodiode. Preventing the lattice damage of the material can improve the product yield rate. In addition, from the point of view of the use of products, the stability of the working environment can extend the service life of products, and the detection accuracy is guaranteed. Conclusively, the results in this paper establish the foundation to investigate the electrical damage mechanism in the silicon-based PIN photodiode irradiated by ms-pulsed laser.
      通信作者: 金光勇, jgycust@163.com
    • 基金项目: 吉林省科学技术厅项目(批准号:20150622011JC)资助的课题.
      Corresponding author: Jin Guang-Yong, jgycust@163.com
    • Funds: Project supported by science and technology department of Jilin Province in China (Grant No. 20150622011JC).
    [1]

    Xu L J, Cai H X, Li C L, Tan Y, Jin G Y, Zhang X H 2013 Optik 124 225

    [2]

    Giuliani J F, Marquardt C L 1974 J. Appl. Phys. 45 4993

    [3]

    Matsuoka Y, Usami A 1974 Appl. Phys. Lett. 25 574

    [4]

    Dou X A, Sun X Q, Shao L 2013 Laser Eng. 25 117

    [5]

    Hameiri Z, Mai L, Puzzer T, Wenham S R 2011 Sol. Energ. Mat. Sol. C 95 1085

    [6]

    Watkins S E, Zhang C Z, Walser R M, Becker M F 1990 Appl. Opt. 29 827

    [7]

    Moeglin J P 2002 Opt. Laser Eng. 38 261

    [8]

    Vest R E, Grantham S 2003 Appl. Opt. 42 5054

    [9]

    Shaw P S, Gupta R, Lykke K R 2005 Appl. Opt. 44 197

    [10]

    Liu T H, Zhong H R, Lu Q S, Jiang Z F, Wang Y P 2001 Laser J. 22 5 (in Chinese) [刘天华, 钟海荣, 陆启生, 姜宗福, 王云萍 2001 激光杂志 22 5]

    [11]

    Jiang J J 2005 M. S. Thesis (Sichuan: Sichuan University) (in Chinese) [江继军2005 硕士学位论文 (四川:四川大学)]

    [12]

    Li Z W, Wang X, Shen Z H, Lu J, Ni X W 2012 Appl. Opt. 51 2759

    [13]

    Li Z W, Wang X, Shen Z H, Lu J, Ni X W 2015 Appl. Opt. 54 378

    [14]

    Wei Z 2014 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [魏智硕士学位论文 (长春:长春理工大学)]

    [15]

    Geist J, Zalewski E F, Schaefer A R 1980 Appl. Opt. 19 3795

    [16]

    Arora V K, Dawar A L 1996 Infrared Phys. Techn. 37 245

    [17]

    Arora V K, Dawar A L 1996 Appl. Opt. 35 7061

    [18]

    Brand A A, Meyer F, Nekarda J F, Preu R 2014 Appl. Phys. A 117 237

    [19]

    Sun H Y 2006 M. S. Thesis (Changsha: Graduate School of National University of Defense Technology) (in Chinese) [孙赫颖 2006 硕士学位论文 (长沙:国防科学技术大学)]

    [20]

    Du L Y, Wu Z M, Li R, Tang F, Jiang Y D 2016 Opt. Lett 41 5031

    [21]

    Zhao F 2010 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [赵菲 2010 硕士学位论文 (长春: 长春理工大学)]

    [22]

    Wang Y Z, Song X N 2012 Acta Phys. Sin. 61 234601 (in Chinese) [王颖泽, 宋新南 2012 物理学报 61 234601]

    [23]

    Wei Z, Jin G Y, Peng B, Zhang X H, Tan Y 2014 Acta Phys. Sin. 63 194205 (in Chinese) [魏智, 金光勇, 彭博, 张喜和, 谭永 2014 物理学报 63 194205]

    [24]

    Kumar B U, Pardoen T, Passi V, Hoshi Y, Raskin J P 2013 Appl. Phys. Lett. 102 031911

    [25]

    Kahn H, Heuer A H 2002 Science 298 1215

    [26]

    Tayagaki T, Usami N, Pan W, Hoshi Y, Ooi K, Kanemitsu Y 2012 Appl. Phys. Lett. 101 133905

  • [1]

    Xu L J, Cai H X, Li C L, Tan Y, Jin G Y, Zhang X H 2013 Optik 124 225

    [2]

    Giuliani J F, Marquardt C L 1974 J. Appl. Phys. 45 4993

    [3]

    Matsuoka Y, Usami A 1974 Appl. Phys. Lett. 25 574

    [4]

    Dou X A, Sun X Q, Shao L 2013 Laser Eng. 25 117

    [5]

    Hameiri Z, Mai L, Puzzer T, Wenham S R 2011 Sol. Energ. Mat. Sol. C 95 1085

    [6]

    Watkins S E, Zhang C Z, Walser R M, Becker M F 1990 Appl. Opt. 29 827

    [7]

    Moeglin J P 2002 Opt. Laser Eng. 38 261

    [8]

    Vest R E, Grantham S 2003 Appl. Opt. 42 5054

    [9]

    Shaw P S, Gupta R, Lykke K R 2005 Appl. Opt. 44 197

    [10]

    Liu T H, Zhong H R, Lu Q S, Jiang Z F, Wang Y P 2001 Laser J. 22 5 (in Chinese) [刘天华, 钟海荣, 陆启生, 姜宗福, 王云萍 2001 激光杂志 22 5]

    [11]

    Jiang J J 2005 M. S. Thesis (Sichuan: Sichuan University) (in Chinese) [江继军2005 硕士学位论文 (四川:四川大学)]

    [12]

    Li Z W, Wang X, Shen Z H, Lu J, Ni X W 2012 Appl. Opt. 51 2759

    [13]

    Li Z W, Wang X, Shen Z H, Lu J, Ni X W 2015 Appl. Opt. 54 378

    [14]

    Wei Z 2014 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [魏智硕士学位论文 (长春:长春理工大学)]

    [15]

    Geist J, Zalewski E F, Schaefer A R 1980 Appl. Opt. 19 3795

    [16]

    Arora V K, Dawar A L 1996 Infrared Phys. Techn. 37 245

    [17]

    Arora V K, Dawar A L 1996 Appl. Opt. 35 7061

    [18]

    Brand A A, Meyer F, Nekarda J F, Preu R 2014 Appl. Phys. A 117 237

    [19]

    Sun H Y 2006 M. S. Thesis (Changsha: Graduate School of National University of Defense Technology) (in Chinese) [孙赫颖 2006 硕士学位论文 (长沙:国防科学技术大学)]

    [20]

    Du L Y, Wu Z M, Li R, Tang F, Jiang Y D 2016 Opt. Lett 41 5031

    [21]

    Zhao F 2010 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [赵菲 2010 硕士学位论文 (长春: 长春理工大学)]

    [22]

    Wang Y Z, Song X N 2012 Acta Phys. Sin. 61 234601 (in Chinese) [王颖泽, 宋新南 2012 物理学报 61 234601]

    [23]

    Wei Z, Jin G Y, Peng B, Zhang X H, Tan Y 2014 Acta Phys. Sin. 63 194205 (in Chinese) [魏智, 金光勇, 彭博, 张喜和, 谭永 2014 物理学报 63 194205]

    [24]

    Kumar B U, Pardoen T, Passi V, Hoshi Y, Raskin J P 2013 Appl. Phys. Lett. 102 031911

    [25]

    Kahn H, Heuer A H 2002 Science 298 1215

    [26]

    Tayagaki T, Usami N, Pan W, Hoshi Y, Ooi K, Kanemitsu Y 2012 Appl. Phys. Lett. 101 133905

  • [1] 程学明, 崔文宇, 祝鲁平, 王霞, 刘宗明, 曹丙强. 具有快响应速度和低暗电流的垂直MSM型CsPbBr3薄膜光电探测器. 物理学报, 2024, 73(20): 208501. doi: 10.7498/aps.73.20241075
    [2] 赵华良, 彭红玲, 周旭彦, 张建心, 牛博文, 尚肖, 王天财, 曹澎. InP衬底上的双载流子倍增雪崩光电二极管结构设计. 物理学报, 2023, 72(19): 198502. doi: 10.7498/aps.72.20230885
    [3] 闫大为, 田葵葵, 闫晓红, 李伟然, 俞道欣, 李金晓, 曹艳荣, 顾晓峰. GaN肖特基二极管的正向电流输运和低频噪声行为. 物理学报, 2021, 70(8): 087201. doi: 10.7498/aps.70.20201467
    [4] 王傲霜, 肖清泉, 陈豪, 何安娜, 秦铭哲, 谢泉. Mg2Si/Si雪崩光电二极管的设计与模拟. 物理学报, 2021, 70(10): 108501. doi: 10.7498/aps.70.20201923
    [5] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [6] 张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光. 高时间稳定性的雪崩光电二极管单光子探测器. 物理学报, 2020, 69(7): 074204. doi: 10.7498/aps.69.20191875
    [7] 梁振江, 刘海霞, 牛燕雄, 尹贻恒. 基于谐振腔增强型石墨烯光电探测器的设计及 性能分析. 物理学报, 2016, 65(13): 138501. doi: 10.7498/aps.65.138501
    [8] 廖开升, 李志锋, 李梁, 王超, 周孝好, 戴宁, 李宁. 阻挡杂质带红外探测器中的界面势垒效应. 物理学报, 2015, 64(22): 227302. doi: 10.7498/aps.64.227302
    [9] 杨丹, 张丽, 杨盛谊, 邹炳锁. 基于垂直晶体管结构的低电压并五苯光电探测器. 物理学报, 2015, 64(10): 108503. doi: 10.7498/aps.64.108503
    [10] 刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙. 量子点红外探测器的噪声表征. 物理学报, 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [11] 张宣妮, 张淳民, 艾晶晶. 四分束风成像偏振干涉仪信噪比的研究. 物理学报, 2013, 62(3): 030701. doi: 10.7498/aps.62.030701
    [12] 霍文娟, 谢红云, 梁松, 张万荣, 江之韵, 陈翔, 鲁东. 单载流子传输的双异质结光敏晶体管探测器的研究. 物理学报, 2013, 62(22): 228501. doi: 10.7498/aps.62.228501
    [13] 刘景旺, 杜振辉, 李金义, 齐汝宾, 徐可欣. DFB激光二极管电流-温度调谐特性的解析模型. 物理学报, 2011, 60(7): 074213. doi: 10.7498/aps.60.074213
    [14] 莫秋燕, 赵彦立. 光通信用雪崩光电二极管(APD)频率响应特性研究. 物理学报, 2011, 60(7): 072902. doi: 10.7498/aps.60.072902
    [15] 许双英, 胡林华, 李文欣, 戴松元. 染料敏化太阳电池中TiO2颗粒界面接触对电子输运影响的研究. 物理学报, 2011, 60(11): 116802. doi: 10.7498/aps.60.116802
    [16] 周 梅, 赵德刚. p-GaN层厚度对GaN基p-i-n结构紫外探测器性能的影响. 物理学报, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [17] 周 梅, 常清英, 赵德刚. 一种减小GaN基肖特基结构紫外探测器暗电流的方法. 物理学报, 2008, 57(4): 2548-2553. doi: 10.7498/aps.57.2548
    [18] 熊大元, 李 宁, 徐文兰, 甄红楼, 李志锋, 陆 卫. 甚长波量子阱红外探测器的暗电流特性研究. 物理学报, 2007, 56(9): 5424-5428. doi: 10.7498/aps.56.5424
    [19] 李宏伟, 王太宏. InAs自组装量子点GaAs肖特基二极管中的电流输运特性. 物理学报, 2001, 50(2): 262-267. doi: 10.7498/aps.50.262
    [20] 袁皓心, 李齐光, 姜山, 陆卫, 童斐明, 汤定元. Hg1-xCdxTe n+-p光电二极管中的深能级及其电流机构的流体静压力研究. 物理学报, 1990, 39(3): 464-471. doi: 10.7498/aps.39.464
计量
  • 文章访问数:  6408
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-22
  • 修回日期:  2017-03-06
  • 刊出日期:  2017-05-05

/

返回文章
返回