-
GaN based Schottky barrier diode (SBD) possesses advantages including high power density, high conversion efficiency, and excellent switching characteristics. During heteroepitaxial growth of GaN, a high density of threading dislocations is inevitably introduced, which can degrade device reliability. This paper reports a low dislocation density N+/N– GaN quasi-vertical SBD fabricated on a freestanding GaN substrate. The characterization results of high-resolution X-ray diffraction and atomic force microscopy demonstrate that the high-quality epitaxial layer with a total dislocation density of 1.01 × 108 cm–2 and a root mean square surface roughness of 0.149 nm is achieved on a freestanding GaN substrate. The device prepared based on a high-quality epitaxial layer exhibits an ultra-low leakage current density of 10–5 A/cm2 at a reverse voltage of –5 V, without employing any edge termination structures or field plates or plasma treatment. Compared with the devices prepared on sapphire substrates using identical processes, the device prepared in this work reduces the reverse leakage current by four orders of magnitude. The experimental results show that the quasi-vertical GaN based SBD fabricated on a freestanding GaN substrate significantly reduces reverse leakage current and substantially enhances the overall electrical performance of the device. By employing emission-microscope (EMMI), leakage current in quasi-vertical SBD is identified to be primarily localized at the anode edge, and the underlying leakage mechanism is elucidated. Finally, temperature-dependent measurements demonstrate that the device maintains a leakage current below 10–3 A/cm2 at 100 ℃, confirming the potential of quasi-vertical SBD on freestanding GaN substrate for practical applications.
-
Keywords:
- freestanding gallium nitride /
- dislocation density /
- quasi-vertical schottky diode /
- electrical properties
-
表 1 两组样品在(002)和(102)晶面的半高宽(FWHM)和位错密度
Table 1. FWHM and dislocation density of two groups of samples on the (002) and (102) crystal plane.
编号 (002)/
arcsec(102)/
arcsec螺位错密
度/cm–2刃位错密
度/cm–2总位错密
度/cm–2样品a 96 125 1.85×107 8.28×107 1.01×108 样品b 319 717 2.04×108 2.73×109 2.93×109 -
[1] Liu X, Xu S R, Zhang T, Tao H C, Su H K, Gao Y, Xie L, Wang X H, Zhang J C, H Y 2025 Appl. Phys. Lett. 126 202103
Google Scholar
[2] 徐爽, 许晟瑞, 王心颢, 卢灏, 刘旭, 贠博祥, 张雅超, 张涛, 张进成, 郝跃 2023 物理学报 72 196101
Google Scholar
Xu S, Xu S R, Wang X H, Lu H, Liu X, Yun B X, Zhang Y C, Zhang T, Zhang J C, Hao Y 2023 Acta Phys. Sin. 72 196101
Google Scholar
[3] Su H K, Xu S R, Tao H C, Fan X M, Du J J, Peng R S 2021 IEEE Electron Device Lett. 10 1109
[4] 许钪, 许晟瑞, 陶鸿昌, 苏华科, 高源, 杨赫, 安暇, 黄俊, 张进成, 郝跃 2024 电子学报 52 3907
Xu K, Xu S R, Tao H C, Su H K, Gao Y, Yang H, An X, Huang J, Zhang J C, Hao Y 2024 Acta Electron. Sin. 52 3907
[5] Su H K, Zhang T, Xu S R, Tao H C, Gao Y, Liu X, Xie L, Xiang P, Cheng K, Hao Y, Zhang J C 2024 Appl. Phys. Lett. 124 162102
Google Scholar
[6] Tan G H, Yan F, Chen X L, Luo W K 2018 Appl. Opt. 10 1364
[7] Brendel M, Helbling M, Knigge A, Brunner F, Weyers M 2015 Electron. Lett. 51 1598
Google Scholar
[8] Zhang Y, Wong H Y, Sun M, Joglekar S, Yu L, Braga N A 2015 IEDM 10 1109
[9] Jin W Y, Zhang Y M, Xia S Y, Zhu Q Z, Sun Y H, Yi J M, Wang J F, Xu K 2024 AIP Adv. 14 095118
Google Scholar
[10] Xu J Y, Liu X, Xie B, Hao Y L, Wen C P, Wei J 2023 IEEE Trans. Electron. Device 32 41260
[11] Liao Y Q, Chen T, Wang J, Cai W T, Ando Y, Yang X, Watanabe H, Tanaka A 2022 Appl. Phys. Lett. 120 122109
Google Scholar
[12] Yoshizumi Y, Hashimoto S, Tanabe T, Kiyama M 2007 J. Cryst. Growth 298 8758
[13] Ban K, Yamamoto J, Takeda K, Ide K, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I, Amano H 2011 Appl. Phys. Express 4 052101
Google Scholar
[14] Lu H, Xu S R, Huang Y, Chen X, Xu S, Liu X, Wang X H, Gao Y, Zhang Y C, Duan X L, Zhang J C, H Y 2024 J. Inorg. Mater. 202 30490
[15] Lu X, Liu C, Jiang H X, Zou X B, Zhang A P, Lau K M 2016 Appl. Phys. Express 9 031001
Google Scholar
[16] Li Q B, Liu G X, Wang S Z, Liu L, Yu J X, Wang G D, Cui P, Zhang S Y, Xu X G, Zhang L 2025 Surf. Interfaces 56 105554
Google Scholar
[17] Liu W S, Wu S H, Balaji G, Huang L C, Chi C K, Hu K J, Kuo H C 2024 Appl. Phys. A 130 801
Google Scholar
[18] 武鹏, 张涛, 张进成, 郝跃 2022 物理学报 71 158503
Google Scholar
Wu P, Zhang T, Zhang J C, H Y, 2022 Acta Phys. Sin. 71 158503
Google Scholar
[19] Cao Y, Chu R, Li R, Chen M, Chang R, Hughes B 2016 Appl. Phys. Lett 108 062103
Google Scholar
[20] Chen J B, Bian Z K, Liu Z H, Ning J, Duan X L, Zhao S L, Wang H Y, Tang Q, Wu Y H, Song Y Q, Zhang J C, Hao Y 2019 Semicond. Sci. Technol. 34 115019
Google Scholar
[21] Lambert D J H, Zhu T G, Shelton B S, Wong M M, Chowdhury U, Dupuis R D 2000 Appl. Phys. Lett. 77 2918
Google Scholar
[22] Witte W, Fahle D, Koch H, Heuken M, Kalisch H, Vescan A 2012 Semicond. Sci. Technol 27 085015
Google Scholar
[23] Zhang Y H, Sun M, Piedra D, Azize M, Zhang X, Fujishima T 2014 IEEE Trans. Electron Devices 10 1109
[24] Bian Z K, Zhou H, Xu S R, Zhang T, Dang K, Chen J B, Zhang J C, Hao Y 2019 Superlattices Microstruct. 125 295
Google Scholar
[25] Tokuda H, Watanabe F, Syahiman A, Kuzuhara M, Fujiwara T 2011 IEEE MTT-S 10 1109
[26] Li L, Kishi A, Liu Q, Itai Y, Fujihara R, Ohno Y 2014 IEEE J. Electron Devices Soc. 6 168
[27] Sang L W, Ren B, Sumiya M, Liao M, Koide Y 2017 Appl. Phys. Lett. 111 122102
Google Scholar
[28] Kim B, Moon D, Joo K, Oh S, Lee Y K, Park Y, Nanishi Y, Yoon E 2014 Appl. Phys. Lett. 104 102101
Google Scholar
[29] Wang J, You H F, Guo H, Xue J J, Yang G F, Chen D J, Liu B, Lu H, Zhang R, Zheng Y D 2020 Appl. Phys. Lett. 116 062104
Google Scholar
Metrics
- Abstract views: 444
- PDF Downloads: 6
- Cited By: 0