-
Based on the drift-diffusion transport model, Fermi-Dirac statistics and Shockley-Read-Hall recombination model, the effect of the structure parameters on the performance of N-polar GaN/InAlN high electron mobility transistor is investigated by self-consistently solving the Schrodinger equation, Poisson equation and carrier continuity equation. The results indicate that the saturation current density of the device increases and the threshold voltage shifts negatively with GaN channel thickness increasing from 5 nm to 15 nm and InAlN back barrier thickness increasing from 10 nm to 40 nm. The maximum transconductance decreases with GaN channel thickness increasing or InAlN back barrier thickness decreasing. The change trends of the various performance parameters become slow gradually with the increase of the thickness of the GaN channel layer and InAlN back barrier layer. When the GaN channel thickness is beyond 15 nm or the InAlN back barrier thickness is more than 40 nm, the saturation current, the threshold voltage and the maximum transconductance tend to be stable. The influence of the structure parameter on the device performance can be mainly attributed to the dependence of the built-in electric field, energy band structure and the two-dimensional electron gas (2DEG) on the thickness of the GaN channel layer and InAlN back barrier layer. The main physical mechanism is explained as follows. As the GaN channel thickness increases from 5 nm to 15 nm, the bending of the energy band in the GaN channel layer is mitigated, which means that the total built-in electric field in this layer decreases. However, the potential energy drop across this GaN channel layer increases, resulting in the fact that the quantum well at the GaN/InAlN interface becomes deeper. So the 2DEG density increases with GaN channel thickness increasing. Furthermore, the saturation current density of the device increases and the threshold voltage shifts negatively. Moreover, due to the larger distance between the gate and the 2DEG channel, the capability of the gate control of the high electron mobility transistor decreases. Similarly, the depth of the GaN/InAlN quantum well increases with InAlN back barrier thickness increasing from 10 nm to 40 nm, which results in the increase of the 2DEG concentration. Meanwhile, the electron confinement in the quantum well is enhanced. Therefore the device saturation current and the maximum transconductance increase with InAlN back barrier thickness increasing.
-
Keywords:
- N-polar GaN/InAlN /
- high electron mobility transistor /
- structure parameter /
- electrical performance
[1] Mishra U K, Likun S, Kazior T E, Wu Y F 2008 Proc. IEEE 96 287Google Scholar
[2] Cao M Y, Zhang K, Chen Y H, Zhang J C, Ma X H, Hao Y 2014 Chin. Phys. B 23 037305Google Scholar
[3] 黄森, 杨树, 唐智凯, 化梦媛, 王鑫华, 魏珂, 包琦龙, 刘新宇, 陈敬 2016 中国科学: 物理学 力学 天文学 46 107307
Huang S, Yang S, Tang Z K, Hua M Y, Wang X H, Wei K, Bao Q L, Liu X Y, Chen J 2016 Sci. Sin.: Phys. Mech. Astron. 46 107307
[4] Khan M A, Bhattarai A, Kuznia J N, Olson D T 1993 Appl. Phys. Lett. 63 1214Google Scholar
[5] Xie G, Tang C, Wang T, Guo Q, Zhang B, Sheng K, Wai T N 2013 Chin. Phys. B 22 026103Google Scholar
[6] 李淑萍, 张志利, 付凯, 于国浩, 蔡勇, 张宝顺 2017 物理学报 66 197301Google Scholar
Li S P, Zhang Z L, Fu K, Yu G H, Cai Y, Zhang B S 2017 Acta Phys. Sin. 66 197301Google Scholar
[7] Fitch R C, Walker D E, Green A J, Tetlak S E, Gillespie J K, Gilbert R D, Sutherlin K A, Gouty W D, Theimer J P, Via G D, Chabak K D, Jessen G H 2015 IEEE Electron Device Lett. 36 1004Google Scholar
[8] 张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红 2018 物理学报 67 076801Google Scholar
Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801Google Scholar
[9] Han T C, Zhao H D, Peng X C 2019 Chin. Phys. B 28 047302Google Scholar
[10] Zhao S L, Wang Z Z, Chen D Z, Wang M J, Dai Y, Ma X H, Zhang J C, Hao Y 2019 Chin. Phys. B 28 027301Google Scholar
[11] Wu Y, Chen C Y, del AlamoJ A 2015 J. Appl. Phys. 117 025707Google Scholar
[12] Yan D W, Ren J, Yang G F, Xiao S Q, Gu X F, Lu H 2015 IEEE Electron Device Lett. 36 1281Google Scholar
[13] Xie G, Xu E, Hashemi N, Zhang B, Fu F Y, Ng W T 2012 Chin. Phys. B 21 086105Google Scholar
[14] Zhang S, Wei K, Ma X H, Zhang Y C, Lei T M 2019 Appl. Phys. Express 12 054007Google Scholar
[15] Lin H K, Huang F H, Yu H L 2010 Solid-State Electron. 54 582Google Scholar
[16] Wu S, Ma X H, Yang L, Mi M H, Zhang M, Wu M, Lu Y, Zhang H S, Yi C P, Hao Y 2019 IEEE Electron Device Lett. 40 846Google Scholar
[17] Tan X, Zhou X Y, Guo H Y, Gu G D, Wang Y G, Song X B, Yin J Y, Lv Y J, Feng Z H 2016 Chin. Phys. Lett. 33 098501Google Scholar
[18] Liu T T, Zhang K, Zhu G R, Zhou J J, Kong Y C, Yu, X X, Chen T S 2018 Chin. Phys. B 27 047307Google Scholar
[19] Pardeshi H, Raj G, Pati S, Mohankumar N, Sarkar C K 2013 Superlattices Microstruct. 60 47Google Scholar
[20] Deen D A, Storm D F, Meyer D J, Bass R, Binari S C, Gougousi T, Evans K R 2014 Appl. Phys. Lett. 105 093503Google Scholar
[21] Kong Y C, Zhou J J, Kong C, Dong X, Zhang Y T, Lu H Y, Chen T S 2013 Appl. Phys. Lett. 102 043505Google Scholar
[22] Quan R D, Zhang J C, Xue J S, Zhao Y, Ning J, Lin Z Y, Zhang Y C, Ren Z Y, Hao Y 2016 Chin. Phys. Lett. 33 088102Google Scholar
[23] 张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃 2009 物理学报 58 3409
Zhang J C, Zheng P T, Dong Z D, Duan H T, Ni J Y, Zhang J F, Hao Y 2009 Acta Phys. Sin. 58 3409
[24] Han T C, Zhao H D, Yang L, Wang Y 2017 Chin. Phys. B 26 107301Google Scholar
[25] Rajan S, Wong M, Fu Y, Wu F, Speck J S, Mishra U K 2005 Jpn J. Appl. Phys. 44 L1478Google Scholar
[26] Keller S, Suh C S, Chen Z, Chu R, Rajan S, Fichtenbaum N A, Denbaars S P, Speck J S, Mishra U K 2008 J. Appl. Phys. 103 033708Google Scholar
[27] Ahmadi E, Wu F, Li H R, Kaun S W, Tahhan M, Hestroffer K, Keller S, Speck J S, Mishra U K 2015 Semicond. Sci. Technol. 30 055012Google Scholar
[28] Ahmadi E, Keller S, Mishra U K 2016 J. Appl. Phys. 120 115302Google Scholar
[29] 王现彬, 赵正平, 冯志红 2014 物理学报 63 080202
Wang X B, Zhao Z P, Feng Z H 2014 Acta Phys. Sin. 63 080202
[30] 郝跃, 薛军帅, 张进成 2012 中国科学: 信息科学 42 1577
Hao Y, Xue J S, Zhang J C 2012 Sci. Sin. Inform. 42 1577
[31] 孔月婵, 郑有炓, 储荣明, 顾书林 2003 物理学报 52 1756
Kong Y C, Zheng Y D, Chu R M, Gu S L 2003 Acta Phys. Sin. 52 1756
[32] Selberherr S 1984 Analysis and Simulation of Semiconductor Devices. (New York: Springer-Verlag) p16
[33] Dong Y, Chen D J, Lu H, Zhang R, Zheng Y D 2018 Int. J. Numer. Modell. Eletron. Networks Devices Fields 31 e2299
[34] Shockley W, Read W T 1952 Phys. Rev. 87 835Google Scholar
[35] Rakoski A, Diez S, Li H R, Keller S, Ahmadi E, Kurdak C 2019 Appl. Phys. Lett. 114 162102Google Scholar
[36] Denninghoff D, Lu J, Laurent M, Ahmadi E, Keller S, Mishra U K 2012 70 th Device Research Conference Pennsylvania, USA, June 18−20, 2012 p151
[37] Wong M H, Keller S, Dasgupta N S, Denninghoff D J, Kolluri S, Brown D F, Lu J, Fichtenbaum N A, Ahmadi E, Singisetti U, Chini A, Rajan S, Denbaars S P, Speck J S, Mishra U K 2013 Semicond. Sci. Technol. 28 074009Google Scholar
-
图 5 不同InAlN背势垒层厚度下, N极性面GaN/InAlN HEMT器件栅极下方的(a)导带结构(内插图为三角势阱处导带结构的局部放大图), 以及(b) 电子浓度分布图
Figure 5. (a) Conduction-band energy diagram and (b) electron distribution in N-polar GaN/InAlN HEMTs with different InAlN back barrier thicknesses. The inset in panel (a) is the partial enlarged conduction-band energy of the rectangular quantum well.
-
[1] Mishra U K, Likun S, Kazior T E, Wu Y F 2008 Proc. IEEE 96 287Google Scholar
[2] Cao M Y, Zhang K, Chen Y H, Zhang J C, Ma X H, Hao Y 2014 Chin. Phys. B 23 037305Google Scholar
[3] 黄森, 杨树, 唐智凯, 化梦媛, 王鑫华, 魏珂, 包琦龙, 刘新宇, 陈敬 2016 中国科学: 物理学 力学 天文学 46 107307
Huang S, Yang S, Tang Z K, Hua M Y, Wang X H, Wei K, Bao Q L, Liu X Y, Chen J 2016 Sci. Sin.: Phys. Mech. Astron. 46 107307
[4] Khan M A, Bhattarai A, Kuznia J N, Olson D T 1993 Appl. Phys. Lett. 63 1214Google Scholar
[5] Xie G, Tang C, Wang T, Guo Q, Zhang B, Sheng K, Wai T N 2013 Chin. Phys. B 22 026103Google Scholar
[6] 李淑萍, 张志利, 付凯, 于国浩, 蔡勇, 张宝顺 2017 物理学报 66 197301Google Scholar
Li S P, Zhang Z L, Fu K, Yu G H, Cai Y, Zhang B S 2017 Acta Phys. Sin. 66 197301Google Scholar
[7] Fitch R C, Walker D E, Green A J, Tetlak S E, Gillespie J K, Gilbert R D, Sutherlin K A, Gouty W D, Theimer J P, Via G D, Chabak K D, Jessen G H 2015 IEEE Electron Device Lett. 36 1004Google Scholar
[8] 张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红 2018 物理学报 67 076801Google Scholar
Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801Google Scholar
[9] Han T C, Zhao H D, Peng X C 2019 Chin. Phys. B 28 047302Google Scholar
[10] Zhao S L, Wang Z Z, Chen D Z, Wang M J, Dai Y, Ma X H, Zhang J C, Hao Y 2019 Chin. Phys. B 28 027301Google Scholar
[11] Wu Y, Chen C Y, del AlamoJ A 2015 J. Appl. Phys. 117 025707Google Scholar
[12] Yan D W, Ren J, Yang G F, Xiao S Q, Gu X F, Lu H 2015 IEEE Electron Device Lett. 36 1281Google Scholar
[13] Xie G, Xu E, Hashemi N, Zhang B, Fu F Y, Ng W T 2012 Chin. Phys. B 21 086105Google Scholar
[14] Zhang S, Wei K, Ma X H, Zhang Y C, Lei T M 2019 Appl. Phys. Express 12 054007Google Scholar
[15] Lin H K, Huang F H, Yu H L 2010 Solid-State Electron. 54 582Google Scholar
[16] Wu S, Ma X H, Yang L, Mi M H, Zhang M, Wu M, Lu Y, Zhang H S, Yi C P, Hao Y 2019 IEEE Electron Device Lett. 40 846Google Scholar
[17] Tan X, Zhou X Y, Guo H Y, Gu G D, Wang Y G, Song X B, Yin J Y, Lv Y J, Feng Z H 2016 Chin. Phys. Lett. 33 098501Google Scholar
[18] Liu T T, Zhang K, Zhu G R, Zhou J J, Kong Y C, Yu, X X, Chen T S 2018 Chin. Phys. B 27 047307Google Scholar
[19] Pardeshi H, Raj G, Pati S, Mohankumar N, Sarkar C K 2013 Superlattices Microstruct. 60 47Google Scholar
[20] Deen D A, Storm D F, Meyer D J, Bass R, Binari S C, Gougousi T, Evans K R 2014 Appl. Phys. Lett. 105 093503Google Scholar
[21] Kong Y C, Zhou J J, Kong C, Dong X, Zhang Y T, Lu H Y, Chen T S 2013 Appl. Phys. Lett. 102 043505Google Scholar
[22] Quan R D, Zhang J C, Xue J S, Zhao Y, Ning J, Lin Z Y, Zhang Y C, Ren Z Y, Hao Y 2016 Chin. Phys. Lett. 33 088102Google Scholar
[23] 张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃 2009 物理学报 58 3409
Zhang J C, Zheng P T, Dong Z D, Duan H T, Ni J Y, Zhang J F, Hao Y 2009 Acta Phys. Sin. 58 3409
[24] Han T C, Zhao H D, Yang L, Wang Y 2017 Chin. Phys. B 26 107301Google Scholar
[25] Rajan S, Wong M, Fu Y, Wu F, Speck J S, Mishra U K 2005 Jpn J. Appl. Phys. 44 L1478Google Scholar
[26] Keller S, Suh C S, Chen Z, Chu R, Rajan S, Fichtenbaum N A, Denbaars S P, Speck J S, Mishra U K 2008 J. Appl. Phys. 103 033708Google Scholar
[27] Ahmadi E, Wu F, Li H R, Kaun S W, Tahhan M, Hestroffer K, Keller S, Speck J S, Mishra U K 2015 Semicond. Sci. Technol. 30 055012Google Scholar
[28] Ahmadi E, Keller S, Mishra U K 2016 J. Appl. Phys. 120 115302Google Scholar
[29] 王现彬, 赵正平, 冯志红 2014 物理学报 63 080202
Wang X B, Zhao Z P, Feng Z H 2014 Acta Phys. Sin. 63 080202
[30] 郝跃, 薛军帅, 张进成 2012 中国科学: 信息科学 42 1577
Hao Y, Xue J S, Zhang J C 2012 Sci. Sin. Inform. 42 1577
[31] 孔月婵, 郑有炓, 储荣明, 顾书林 2003 物理学报 52 1756
Kong Y C, Zheng Y D, Chu R M, Gu S L 2003 Acta Phys. Sin. 52 1756
[32] Selberherr S 1984 Analysis and Simulation of Semiconductor Devices. (New York: Springer-Verlag) p16
[33] Dong Y, Chen D J, Lu H, Zhang R, Zheng Y D 2018 Int. J. Numer. Modell. Eletron. Networks Devices Fields 31 e2299
[34] Shockley W, Read W T 1952 Phys. Rev. 87 835Google Scholar
[35] Rakoski A, Diez S, Li H R, Keller S, Ahmadi E, Kurdak C 2019 Appl. Phys. Lett. 114 162102Google Scholar
[36] Denninghoff D, Lu J, Laurent M, Ahmadi E, Keller S, Mishra U K 2012 70 th Device Research Conference Pennsylvania, USA, June 18−20, 2012 p151
[37] Wong M H, Keller S, Dasgupta N S, Denninghoff D J, Kolluri S, Brown D F, Lu J, Fichtenbaum N A, Ahmadi E, Singisetti U, Chini A, Rajan S, Denbaars S P, Speck J S, Mishra U K 2013 Semicond. Sci. Technol. 28 074009Google Scholar
Catalog
Metrics
- Abstract views: 9289
- PDF Downloads: 117
- Cited By: 0