-
Photonic crystal fiber has great potential applications such as dispersion compensation due to its adjustable and flexible dispersion characteristics. In this paper, we design a dispersion compensation photonic crystal fiber, simulate the dispersion characteristics by the finite-difference frequency-domain method, and analyse the effects of the structure parameters air hole spacing Λ and air-filling fraction d/Λ on the dispersion of photonic crystal fiber theoretically. And we also fabricate three photonic crystal fibers with different structural parameters. Through the comparison and analysis of their dispersion curves, we have the following conclusions: the dispersion coefficient increases with air hole spacing Λ and air-filling fraction d/Λ increasing when the air hole spacing of photonic crystal fiber is about 1 μm, but the dispersion is more sensitive to the change of air hole spacing Λ than to air-filling fraction d/Λ, and the effect of air hole spacing on the dispersion coefficient decreases with the increase of air hole spacing. One of the photonic crystal fibers realizes the designed structure: its dispersion coefficient is 241.5 ps·nm-1·km-1, relative dispersion slope is 0.0018 at 1550 nm, it has good ability in dispersion compensation.
-
Keywords:
- dispersion /
- dispersion compensation /
- photonic crystal fiber /
- structure parameters
[1] Gruner-Nielsen L, Wandel M, Kristensen P, Jorgensen C, Jorgensen L V, Edvold B, Palsdottir B, Jakobsen D 2005 J. Lightwave Technol. 23 3566
[2] Russell P S J 2006 J. Lightwave Technol. 24 4729
[3] Yang S, Zhang Y J, Peng X Z, Lu Y, Xie S H 2006 Opt. Express 14 3015
[4] Jiang L H, Hou L T 2010 Acta Phys. Sin. 59 1095 (in Chinese) [姜凌红,侯蓝田 2010 物理学报 59 1095]
[5] Ritari T, Niemi T, Ludvigsen H, Wegmuller M, Gisin N, Folkenberg J R, Petterson A 2003 Opt. Commun. 226 233
[6] Jing Q, Zhang X, Ma H F, Huang Y Q, Ren X M 2012 Opt. Laser Technol. 44 1660
[7] Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135
[8] Saitoh K, Koshiba M, Hasegawa T, Sasaoka E 2003 Opt. Express 11 843
[9] Shen L P, Huang W P, Chen G X, Jian S S 2003 IEEE Photonic. Tech. L 15 540
[10] Wang Z A, Ren X M, Zhang X, Xu Y Z, Huang Y Q 2007 J. Opt. A Pure Appl. Opt. 9 435
[11] Gerome F, Auguste J L, Blondy J M 2004 Opt. Lett. 29 2725
[12] Fujisawa T, Saitoh K, Wada K, Koshiba M 2006 Opt. Express 14 893
[13] Pourmahyabadi M, Nejad S M 2009 Iranian J. Electr. Electron. Eng. 5 170
[14] Li S G, Liu X D, Hou L T 2004 Acta Phys. Sin. 53 1880 (in Chinese) [李曙光, 刘晓东, 侯蓝田 2004 物理学报 53 1880]
-
[1] Gruner-Nielsen L, Wandel M, Kristensen P, Jorgensen C, Jorgensen L V, Edvold B, Palsdottir B, Jakobsen D 2005 J. Lightwave Technol. 23 3566
[2] Russell P S J 2006 J. Lightwave Technol. 24 4729
[3] Yang S, Zhang Y J, Peng X Z, Lu Y, Xie S H 2006 Opt. Express 14 3015
[4] Jiang L H, Hou L T 2010 Acta Phys. Sin. 59 1095 (in Chinese) [姜凌红,侯蓝田 2010 物理学报 59 1095]
[5] Ritari T, Niemi T, Ludvigsen H, Wegmuller M, Gisin N, Folkenberg J R, Petterson A 2003 Opt. Commun. 226 233
[6] Jing Q, Zhang X, Ma H F, Huang Y Q, Ren X M 2012 Opt. Laser Technol. 44 1660
[7] Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135
[8] Saitoh K, Koshiba M, Hasegawa T, Sasaoka E 2003 Opt. Express 11 843
[9] Shen L P, Huang W P, Chen G X, Jian S S 2003 IEEE Photonic. Tech. L 15 540
[10] Wang Z A, Ren X M, Zhang X, Xu Y Z, Huang Y Q 2007 J. Opt. A Pure Appl. Opt. 9 435
[11] Gerome F, Auguste J L, Blondy J M 2004 Opt. Lett. 29 2725
[12] Fujisawa T, Saitoh K, Wada K, Koshiba M 2006 Opt. Express 14 893
[13] Pourmahyabadi M, Nejad S M 2009 Iranian J. Electr. Electron. Eng. 5 170
[14] Li S G, Liu X D, Hou L T 2004 Acta Phys. Sin. 53 1880 (in Chinese) [李曙光, 刘晓东, 侯蓝田 2004 物理学报 53 1880]
Catalog
Metrics
- Abstract views: 7631
- PDF Downloads: 761
- Cited By: 0