In order to understand the characteristics of the coupled thermal and solutal capillary convection with the radial temperature gradient in a slowly rotating shallow annular pool with the free surface, the asymptotic solution is obtained in the core region using asymptotical analysis in the limit as the aspect ratio, which is defined as the ratio of the layer thickness to the gap width, goes to zer...
A direct and effective linear-controller is employed to exactly control the locations of bifurcation points, both the symmetry-breaking bifurcation and the period-doubling bifurcation, in a cubic symmetry discrete system. Moreover, both the sensibility and the symmetry to the initial values of the system are analyzed. The lack of the solution branches due to the symmetry-breaking bifurcation can b...
A class of relational relativistic rotation nonlinear disturbed dynamical equations possessing nonlinear damping force and forcing periodic force is investigated. Firstly, by using the variational principle, the generalized variational iteration is constructed. Then the initial approximate solution is determined. Finally, by using the iteration, the approximation to an arbitray degree for correspo...
A hybrid stream cipher scheme is proposed based on the novel interacting neural networks and the multiple chaotic systems. At first, random sequences generated by 3 independent logistics functions respectively are taken as dynamic inputs to 3 hidden layers of the interacting neural networks model. Then two inner weights of the two structures of neural networks will be synchronized through some ste...
In this paper, we first discuss the physical meaning of the fractional Frenkel-Kontorova model and depict the transport phenomenon of elastically coupled particles in a memorable medium, then give the effects of various parameters on the motion of coupled particles. According to the numerical value, the memory effect of system has a significant influence on the motion of coupled particles, in addi...
A partial oscillation phenomenon in a digital-controlled three-phase inverter system, which is controlled by proportional controller in synchronous rotating reference frame, is analyzed in this paper. First, the discrete-time model of the system is derived. Then, a dynamics analysis scheme for this type of system is proposed. In addition, the underlying mechanism of the partial oscillation phenome...
This paper deals with the synchronization of complex networks with random nodes. Sufficient conditions for the synchronization of complex networks are derived by using the Lyapunov functional method and linear matrix inequality technique, and the obtained criteria depend on not only the size of the delay, but also the probability distribution of random nodes. A simulation example is exploited in o...
The propagation and interaction properties of optical vortex solitons in a self-defocusing Kerr-type nonlocal medium are investigated by the numerical simulation method. It is indicated that the singly charged vortices are stable and the multicharged vortices are topologically unstable in both the nonlocal and local cases. And in the nonlocal and local cases the point vortices model is applicable ...
With numerical calculation and particle simulation program, the influences of the intense electron beam impedance, voltage and current characteristics on the beam modulation and bunching characteristics in relativistic klystron amplifier (RKA) are analyzed. Within the particle-in-cell simulation program, the beam emission method is used to accurately control the impedance of the electron beam. The...
A new algorithm for infrared image segmentation is proposed based on clustering combined with sparse coding and spatial constraints. The clustering algorithm is fused on the basis of sparse coding. The traditional image segmentation method based on K-means clustering is extended. The clustering algorithm combined with sparse coding can fuse the local information of image. The inner relationships b...
The potential energy curves (PECs) of X1Σ+ and A1Π electronic states of the SiSe molecule are calculated using the internally contracted multireference configuration interaction approach with the Davidson modification (MRCI+Q) with the correlation-consistent basis sets, aug-cc-pV5Z and aug-cc-pVQZ. In order to improve the quality of the PEC, the PEC is extrapolated to the complete basis set limit ...
The lattice parameters, charge populations, band structures, density of states and absorption spectra of P-doped anatase TiO2 are calculated using the first-principles based on the density functional theory. The results indicate that when the Ti atom is substituted for P atom, the volume of TiO2 decreases. When P atom substitutes for O atom or exists as interstitial atom, the volume of TiO2 increa...
On the basis of the theoretical imaging method, we study the photodetachment of H- near a deform sphere. We deduce the formula of the detached electron flux. Then we calculate the detached electron flux distribution and the photodetachment cross-section. The calculation results suggest that the influence of the plane on the photodetachment of negative hydrogen ion is only within a certain range. I...
The spectrum range from 300 to 600 nm is measured with low energy (V≈0.01 VBohr) highly charged Krq+ ions (q=8, 10, 13, 15, 17) impacted on Al surface. The results show that the spectral lines are induced by the impact of low-energy ions on Al surface, and that these lines belong to the sputtered atoms, ions, and the incident ions which are neutralized. The intensity of emission line increases wit...
ELECTROMAGENTISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS
The polarizability tensor of magnetized plasma in frequency domain in laboratory coordinate system is gained by using the transfer matrix between the principal and the laboratory system, and then its exponential function form in time domain is derived by inverse Fourier transform. Combined with the semi-analytical recursive convolution (SARC) algorithm in digital signal process techniques, the SAR...
The close displacement of ultra high frequency radio-frequency identification (UHF RFID) tags can be considered as an electromagnetically interconnected system which causes the mutual coupling effect among antennas of tags, thereby resulting in change in impedance matching condition. Based on the principles of RFID technology and Friis propagation equation, a link budget model of UHF RFID is provi...
An ultrathin, wideband, polarization-insensitive and wide-angle metamaterial absorber is presented, which is based on one order Minkowski fractal double square loop (MFDSL) electric resonator structure and resistance film. The unit cell of this absorber consists of MFDSL, square resistance film, dielectric substrate and metal ground plane. The simulations and analyses of electromagnetic absorbing ...
We present the tunable resonance behavior of laminated metal mesh metamaterial embedded by barium strontium titanate (BST) thin film. The electromagnetic frequency response shows a redshift when the dielectric constant of BST thin film increases, and the tunability is about 22.6%. For the tunable metamaterial proposed in this paper, the structural unit of metal graphics is used as electrodes to ap...
Ultra-wideband (UWB) microwave imaging technology can be used as an effective method of detecting early breast cancer, which is based on the difference of the electrical characteristic between normal breast tissues and tumor. The method can provide both the sufficient resolution and the adequate penetration depth in the breast. In this paper, the finite difference time domain method is employed to...
M-H and M-T curve at cryogenic (10-300 K) of domestic Nd2Fe14B (N50M) permanent magnet are tested by physical property measurement system (PPMS). Br-T and Hci-T figure under the cryogenic condition for N50M are obtained. The orientation degree and three-dimensional magnetization are also analyzed and researched under the cryogenic conditon. The results show that N50M has a strong spin reorientatio...
A novel bend-resistant large-mode-area silica photonic crystal fiber (PCF) is proposed and fabricated. With the advantage of flexible design on the PCF configuration, the properties of large-mode-area, single mode propagation and low bend loss can be simultaneously achieved by intentionally designing the position of defect and the size of air holes. Modal properties and bending loss of the actual ...
The simulation of nonlinear self-focusing phenomenon using ray-tracing method can macroscopically provide an intuitive picture of the propagation of light in a self-focusing material, without adopting paraxial approximation or self-similar hypothesis. In this paper, propagation of light is sampled by discrete slices along a certain direction. Thus nonlinear propagation is turned into the combinati...
By using numerical simulation, the propagation of pseudo-partially coherent Gaussian-Schell model beam in atmospheric turbulence is simulated. The properties of intensity fluctuation of different receiving aperture and aperture averaging factors are statistically analyzed. And the influence of relative changing frequency of the modulating phase which models the partial coherence of beam source on ...
An inversion method for electromagnetic scattering echo data from large-scale layered medium is presented to simultaneously retrieve the electromagnetic property parameters of the medium. Firstly, the inversion is converted into an optimization problem. Then the simulating annealing algorithm is adopted to find the optimal solution by taking full advantage of the algorithm global optimization. Bes...
In 1979, Berry and Balazs [M V Berry and N L Balazs 1979 Am. J. Phys. 47 264] obtained a strict solution of the Schrödinger equation with Airy function used as the initial condition, and described the wave function represented by such solution as the Airy wave-packets. They discovered that infinite Airy wave-packet has unique properties such as non-spreading and free acceleration, proving that it ...
Spectral imaging and polarimetric imaging are both advanced optical detection techniques. Owing to their wide potential in military and civil communities, these techniques have rapidly developed within the past two decades and become well-recognized tools in remote sensing. In recent years, these two techniques presented a new trend toward merging into the imaging spectropolarimetry, and make the ...
The interaction between two edge dislocations in the presence of a tilted lens is studied. It is shown that for the interaction between two off-axis edge dislocations, the edge dislocations vanish, and one or two noncanonical vortices appear under certain conditions. A noncanonical vortex appears for the interaction between the on-axis edge dislocation and off-axis edge dislocation. However, one o...
Based on holographic lithography, layered dye-doped photonic crystals are fabricated in dichromated gelatin emulsions. Under pumping of 532 nm pulse laser, fluorescence spectrums of samples show up remarkable band gaps, and lasing is achieved at the edge of fluorescence band gap with pumping energy increasing. Furthermore, the effects on lasing of matching between the edge of band gap and the peak...
Correlated imaging offers great potentiality, with respect to standard imaging, to obtain the imaging of objects located in optically harsh or noisy environment. It can solve the problems which are difficult to solve by conventional imaging techniques. Recently, it has become one of the hot topics in quantum optics. In this paper, we propose a new scheme of correlated imaging with differential cor...
We show experimentally that a tandem-pumped Yb-doped fiber amplifier with high power and low quantum-defect can be reached. And a high power 21 W output power at 1018 nm is demonstrated finally. We use this 1018 nm fiber laser as a pumping source of the 1080 nm fiber laser to demonstrate the tandem-pumped double-cladding Yb-doped fiber amplifier, and obtain an output power of 18.6 W at 1080 nm wit...
The navel orange is analysed quantitatively for cadmium by laser-induced breakdown spectroscopy. The laser-induced breakdown spectroscopy is used to obtain the characteristic spectrum of Cd in sample. The concentration of sample is detected as a reference concentration by atomic absorption spectrophotometer. The partial least squares method is applied to the data of 39 samples which are preprocess...
In this paper, we report on a distributed sensing system of phase-sensitive optical time-domain reflectometer (Φ-OTDR) based on bi-directional Raman amplification. With the bi-directional Raman amplification, the transmission loss of the optical fiber can be compensated efficiently. The experimental characterization of evenly detected signals along the whole sensing distance of 74 km with 20 m spa...
Based on the nonlinear Schrödinger equation and Fourier transformation, the intensity distributions of the high power flat-topped beam propagating in the nonlinear medium and the free space are studied. The influences of the defects on medium surface on the intensity evolution of flat-topped light beam in the medium and the free space are analyzed. The results show that the larger the beam order, ...
Due to its future use in communication area, nonlocal spatial optical soliton has been a hot research topic recently. However, because of its special border condition, little research has been done on spatial dark solitons especially on its linear stability. In this paper, a method to analyze linear stability of nonlocal spatial dark soliton is put forward, moreover a numerical simulation and anal...
The expression of gain is derived from nonlinear Schrödinger equation with consideration of raman effect when two laser pulses with different wavelengths are emitted into birefringence fiber along two polarization axes. The gain characteristic input laser pulses of different frequencies are revealed by comparing the laser pulses of identical frequency. The result show that the gain spectra will ap...
The multi-axis differential optical absorption spectroscopy (MAX-DOAS) technique, in which solar scattered light beams of different elevation angles are used and the spatial distribution of various trace gases is derived, has been widely used for monitoring the NO2 slant column density. Due to the lack of information in a detectable horizontal range of the MAX-DOAS instrument, the concentration of...
The higher-order intensity moments of optical beams propagating through atmospheric turbulence are studied in the paper. The method to derive higher-order intensity moments in atmospheric turbulence is proposed, and the simple expressions for intensity moments up to the fourth-order are derived. The results obtained in this paper are general, which can reduce to higher-order intensity moments of a...
Extracting the equivalent parameters of the weak-coupling and strong-coupling fishnet structure metamaterial based on the traditional retrieval algorithm and the improved algorithm of Kramers-Kronig relations are proposed, respectively. A comparative analysis of the effectiveness and applicability of the two algorithms are also included. The theoretical analysis and numerical results show that the...
The wedge cell of cholesteric liquid crystal device is designed and fabricated, and doping PM580 (exciton) in the cholesteric liquid crystal, the laser emission action is studied. There appear a series of parallel wedge edges of dislocation lines and different shapes of domain in the wedge cell. The planar state of alignment is confirmed. A second harmonic Nd:YAG 532 nm laser is adopted as a pump ...
According to the nonlinear Kerr effect of photonic crystal, we design a simple structure with arbitrary proportion of energy output, which can be controlled by the pump intensity. At the same time, the structure can also realize the dynamic control of optical switch function, and has low insertion loss, crosstalk, two states of the signal light on/off. Therefore the light switch is of high efficie...
We perform the finite-difference time-domain (FDTD) simulations and analyze a dual-beam-reflection phenomenon for a Gaussian beam illuminating a Kretschmann configuration composed of a lossless dielectric waveguide between a photonic-crystal-made prism and air. One reflection beam has a small positive shift and the other has a large negative shift in the dual-beam-reflection phenomenon. The FDTD s...
Photonic crystal fiber has great potential applications such as dispersion compensation due to its adjustable and flexible dispersion characteristics. In this paper, we design a dispersion compensation photonic crystal fiber, simulate the dispersion characteristics by the finite-difference frequency-domain method, and analyse the effects of the structure parameters air hole spacing Λ and air-filli...
In this paper ferrofluid is infiltrated in the index-guiding microstructured optical fiber (MOF) by the well-known capillary force and air pressure. The influences of the length and concentration of filled fiber on its guidance property are analyzed. Based on the response of fluid refractive index to temperature, the temperature sensitivities of filled MOF with different lengths are investigated w...
A novel double air hole multi-core dual-mode large-mode-area optical fiber is proposed. The characteristics of mode field distribution, effective area of fundamental mode, and bending loss are analyzed. And the effects of all structure parameters on the effective refractive index and effective area are discussed. This structure makes TE01 and TM01 mode cut off, and it is of dual-mode transmission ...
Using the boundary conditions the SH wave transfer matrix is derived in one-dimensional (1D) solid-solid photonic crystal, and the dispersion relation of the SH wave is obtained. The resonator model 1D infinite cycle photonic crystal is established, and the wavelength formula of SH wave total reflection tunnel effect is investigated using the resonance condition of resonator. The physical mechanis...
The rigid-flexible coupling dynamic properties of an internal cantilever beam attached to a rotating hub are studied in this paper. Based on the accurate description of non-linear deformation of the flexible beam, the first-order approximation coupling model is derived from Hamilton theory and assumed mode method, taking into account the second-order coupling quantity of axial displacement caused ...
Thin elastic rod mechanics with background of a kind of single molecule such as DNA and other engineering object has entered into a new developing stage. In this paper the vector method of exact Cosserat elastic rod dynamics is transformed into the form of analytical mechanics with the arc length and time as its independent variables, whose aims are to find new tools for studying rod mechanics and...
The capillary flow in a circular tube under microgravity environment is investigated by the homotopy analysis method (HAM), and the approximate analytical solution in the form of series solution is obtained. Different from other analytical approximate methods, the HAM is totally independent of small physical parameters, and thus it is suitable for most nonlinear problems. The HAM provides us a gre...
Compared with traditional mesh method the smoothed particle hydrodynamics (SPH) is unable to directly implement the solid boundary conditions, which hinders its further application to engineering. Therefore, a new repulsive model is deduced based on the Galerkin method of weighted residuals and traditional repulsive methods. Compared with traditional repulsive models, this model does not include u...
The solition wave in Bose-Einstein condensate with disk-shaped trap is investigated in this paper. Beyond the mean field, a two-dimensional nonlinear Schrödinger equation is obtained. The modulational instability for this system is studied analytically, and the growth rate for it is given.
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES
The spectra of N2 plasma induced by a femtosecond pulsed laser are studied experimentally at sub-atmospheric pressure. The results show that the spectra of laser-induced plasmas for all sample pressures are composed of continuous spectra and line spectra. As the sample pressure is reduced the intensities of continuous spectra undergo the transition from slow increase to rapid decrease; on the othe...
The heavy metal elements contained in soil samples which are collected from Changchun train station, CUST campus, South Lake and Jingyue Lake park are separately analyzed by using the orthogonal dual laser pulses induced breakdown spectroscopy (DP-LIBS). The elements Mn, Cr, Cu and Pb are qualitatively analyzed according to the LIBS spectral intensity. It is shown that the intensity of the spectru...
A new type of pinhole-assisted point backlighter developed and optimized based on experimental research performed on Shenguang-Ⅲ proto-type facility is presented. High quality images of tungsten micro wires and capsule are acquired with a 4.75 keV X-ray point source produced by 1600 J/1 ns/351 nm laser interaction with 3 μm Ti target. Detailed parameters of this backlighter are also obtained using...
In order to obtain the dynamic evolution image of tungsten array for foam padding, and to research the form of interaction between tungsten plasma and foam column, a shadow imaging system of four-frame ultraviolet probe laser (266 nm) is designed on 1 MA pulse power device. The time resolution of the system is 2.5 ns, and static space resolution is superior to 70 μm. The radial shadowgraphy image ...
Based on microchannel plate (MCP) X-ray optics, a transmission soft X-ray band-pass approach is presented. X-ray transmission band-pass characteristics are given through three structures of MCP channel. Calibration results from a square hole MCP and filter on Beijing Synchrotron Radiation Facility show that MCP transmission spectrum is of a wide range of band-pass options and high efficiency, and ...
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES
The structural, thermodynamic, mechanical and electronic properties of 5d transitional metal diborides TMB2 (TM=Hf-Au) are systematically investigated by first-principles within density functional theory. For each diboride, three structures are considered, i.e., AlB2, ReB2 and WB2 structure. The calculated lattice parameters are in good agreement with previous theoretical and experimental results....
The structure, elastic constant, Debey temperature and electron distribution of α-Ti2Zr under high pressure are presented by using first-principles pseudopotential method based on density functional theory in this paper. The calculated structural parameters at zero pressure are in agreement with experimental values. The elastic constants and their pressure dependence are calculated using the stati...
Based on the modified Newman and Ziff algorithm combined with the finite-size scaling theory, in this present work we analytically study the phase transition property of the explosive percolation model induced by Achlioptas process on the Erds Rnyi random network via numerical simulations for the basic percolation quantities including the order parameter, the average cluster size, the moments, the...
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES
In this paper we use first-principles full potential linearized augmented plane wave method to investigate the band structure, density of states as well as the optical properties of ZnO, intrinsic and doped separately with Er and Gd. We find that dut to the carriers contributed by the introduced impurity atoms of rare earth (RE), the electrical conductivity of the system is improved and the Fermi ...
In this paper the spin-Hamiltonian parameters, g factors g//, g⊥ and zero-field splittings b20, b40, b44, b60, b64, for Gd3+ ion in molybdates AMoO4 (A=Ca, Sr, Ba, Pb) are calculated by a diagonalization (of energy matrix) method based on one-electron crystal field mechanism. The crystal field parameters in the matrix are calculated from the superposition model. The results indicate that seven cal...
Vanadium oxide thin films are deposited on Cu/Ti/SiO2/Si by reactive sputtering at room temperature. The crystal structure, component and surface morphology of VOx film are characterized by X ray diffraction, X-ray photoelectron spectroscopy and atomic force microscopy, respectively. These investigations reveal that there is no obvious crystal orientation except weak V2O5 (101) and V2O3 (110) peak...
The temperature dependences of electrical resistivity for Sr-substituted compounds Y1-xSrxCoO3 (x=0, 0.01, 0.05, 0.10, 0.15, 0.20), prepared successfully by sol-gel process, are investigated in a temperature range from 20 to 720 K. The results indicate that with the increase of doping content of Sr the resistivity of Y1-xSrxCoO3 decreases remarkably, which is found to be caused by the increase of ...
The current controlled voltage source model of substrate parasitic resistance of deep sub-micron electrostatic discharge protection device is optimized by considering the effect of conductance modulation. A compact macro-model of substrate resistance is presented according to the characteristics of lightly doped bulk substrate and heavily doped substrate with a lightly doped epitaxial layer, which...
Flexible organic field-effect transistors (OFETs) have revealed wide prospect in their applications to the flexible display, flexible sensor, flexible radio frequency tag and flexible integrated circuit due to their advantages such as foldability, light weight of device and low-cost fabrication process. On the basis of the introduction of advancement in the study of flexible OFETs in this paper, a...
By solving a self-consistent equation for the ferromagnetic d-wave superconducting gap and the exchange energy, we study the Josephson current in the ferromagnetic d-wave superconductor/ferromagnet/ferromagnetic d-wave superconductor junctions. In the Josephson critical current, there are two oscillation components with different periods. It is found that the short-period component can be separate...
The (1-x)(K0.5Na0.5NbO3-LiSbO3-BiFeO3)-xCuFe2O4 (x=0.1, 0.2, 0.3 and 0.4) magnetoelectric composite ceramics are prepared by the conventional solid-state reaction method. The microstructures and properties of the composite ceramics are characterized by X-ray diffractometer, scanning electron microscope and magnetoelectric coupling coefficient meter. The weak ionic interdiffusions between the phase...
Quantum dot (QD) samples studied in the experiment are grown by molecular-beam epitaxy on semi-insulating GaAs substrates. The photoluminescences (PLs) of the excitons in a single QD are measured at 5 K. The PL spectra of the excitons, biexcitons and charged excitons are identified by measuring and analyzing both PL peaks of the circular and linear polarization and power-dependent PL properties. T...
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY
Metal rubber (MR) is a new-type damping material with special raw material and manufacturing process. The helix wire is considered as the geometric unit of MR. The thermal expansion model of the MR is established based on the thermal expansion analyses of micro-springs in different contact states with the Schapery model. Thermal experiments are conducted to analyze the effects of relative density ...
The rapid solidification of ternary NiAl-Mo eutectic alloy is investigated by using melt-spinning technique, and the conventional casting is also carried out for a comparison study. The phase constitutions of the alloy samples obtained from different experiments each include both B2-NiAl intermetallic and bcc-Mo solid solution, which are both presented in the 〈110〉priority growth direction. The gr...
In the presence of Se, Cu(In0.7Ga0.3)Se2 (CIGS) thin films are prepared by the sequential evaporation of Ga, In, Cu at a constant substrate temperature between 250 ℃ and 550 ℃ on the Mo/soda lime glass substrates. The thickness values of films are about 0.7 μm. The structural and phase properties of CIGS films are studied by an X-ray diffractometer, the morphology and crystalline quality are chara...
In this paper, we establish a three-dimensional numerical simulation model for SiGe heterojunction bipolar transistor by the technology computer aided design simulations. In the simulation we investigate the charge collection mechanism by heavy ion radiation in SiGe HBT technology. The results show that the charge collected by the terminals is a strong function of the ion striking position. The se...
Dielectric properties of aqueous NaCl solution, which are dependent on temperature (293-353 K), with a concentration in a range of 0.001-0.5 mol/L at microwave frequencies ranging from 200 MHz to 6.25 GHz are studied experimentally. The results indicate that imaginary part decreases with frequency increasing, and tetrahedral structure of H2O and hydrogen bond of aqueous NaCl solution is broken by ...
Data acquisition time is a bottle neck for increasing imaging speed of magnetic resonance imaging. To solve the problem, a new fast magnetic resonance imaging method based on variable-density spiral acquisition and Bregman iterative reconstruction is proposed in this paper, under the framework of compressed sensing. The proposed method increases the acquisition speed by data undersampling. The res...
Ga2+xO3-x thin films grown on sapphire substrates by metal-organic chemical vapor deposition under different conditions (temperature pressure) are studied by rutherford backscattering spectrometry/channeling. The structural information and crystalline quality are further investigated by high resolution X-ray diffraction (HR-XRD). The results suggest that at the same growth-temperature the crystall...
(Mg, Fe)SiO3-perovskite is currently considered to be the most abundant mineral in the earth’s lower mantle. Its behavior at high temperature and high pressure is crucial for interpreting conditions at the deep level of the mantle, variations of seismic waves, and so on. Equilibrium crystal structures and mechanics properties of MgSiO3 and (Mg0.75, Fe0.25)SiO3 are determined using first-principles...
ZnO nanorods are fabricated by hydrothermal method on glass substrates that are covered with a ZnO seed layer by the thermal decomposition of zinc acetate. The influences of the thermal decomposition temperature on the structural and the optical properties of the obtained ZnO nanorods are carefully studied by using X-ray diffractometry, scanning electron microscopy and spectrophotometry. It is fou...
The accurate value of the turbulent coefficient in Ekman layer of atmosphere is quite important for the numerical weather prediction and pollutant diffusion calculation. In the paper, based on ensemble method and variational method, the ensemble variational retrieval method is proposed, and the gradient of objective function is calculated with the method. Two calculation procedures are also given ...